
Infrared Seeker Performance Metrics

A02-158: Phase I SBIR

Final Report

December 31,2003

DISTRIBUTIOH STATEMENT A
Approved for Public Release

Distribution Unlimited

Invariant Corporation

2mK09 088

REPORT DOCUMENTATION PAGE Form Approved
0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of infomiation. Send comments regarding this burden estimate or any other aspect of this
collection of infomiation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Ariinqton, VA 22202-4302, and the Office of Management and Budget, papenvork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave
Blank)

2. REPORT DATE

31 Dec 2003

3. REPORT TYPE AND DATES COVERED

Final: Jan 2003 - Dec 2003
4. TITLE AND SUBTITLE

Infrared Seeker Perfonnance Metrics

5. FUNDING NUMBERS

DAAH01-03-C-R129

6. AUTHOR(S)

David R. Anderson, Jim Moore, John
Montgomery, and Mark Chambliss

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Invariant Corporation Dynetics
4800 Whitesburg Dr #30-353 1000 Explorer Boulevard
Huntsville, AL 35802 Huntsville, AL 35806

8. PERFORMING ORGANIZATION
REPORT NUMBER

INV-rR-03-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Aviation and Missile Command
AllN: AMSAM-RD-MG-IR
Redstone Arsenal, AL 35898
Lisa B. Cannon

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT (see Section 5.3b of this solicitation)

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Report developed under SBIR contract for topic A02-158. Advances in imaging infrared (IIR) technology and demonstration
of this technology as a capable means of target discrimination, automatic target recognition (ATR), and auto-tracking have led
to the development of numerous IIR weapon systems. Although excellent analysis tools exist for describing the imaging
sensors themselves, no adequate method or tools exist for characterizing the auto-detection and tracking performance
capability of the sensors against targets in a variety of backgroimds. This is complicated by the fact that auto-detection and
tracking techniques are difficult to characterize. It is impossible to generate a single generic metric that will accurately predict
the performance of all imaging auto-trackers. Typically auto-trackers can be categorized based on their fundamental
algorithm. With knowledge of the detection or tracking algorithm, an appropriate metric can be used to predict performance.
This effort identifies the common detection algorithms and tracker routines and uses the fimdamental algorithms as metrics.
These metrics will be used to analyze real imagery from various IR sensors. A methodology for a performance metric will be
developed that accurately predicts auto-detection and tracker performance and a validation plan will be developed comparing
actual auto-detection and tracker systems to the metric results.

As the U.S. Army moves forward in its use of IIR technology, development of a tool capable of predicting auto-detection and
tracker performance is essential for optimizing algorithm development and setting seeker system parameters.

14. SUBJECT TERMS
SBIR Report, Signature Metrics, Seeker Performance, Auto-tracker Performance, ATD Performance

15. NUMBER OF PAGES
105

16. PRICE CODE

17. SECURITY CLASSIFICTION OF

Unclassified
18. SECURITY CLASSIFICATION OF

THIS PAGE , , , ._ ,
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT , , , ._ ,

Unclassified
20. LIMITATION OF ABSTRACT

UL

REFE

Report Number: INV-TR-03-001

SBIR A02-158 Phase I: Infrared Seeker Performance Metrics

Final Report

Prepared for:
US Army Aviation and Missile Command

ATTN: AMSAM-RD-MG-IR
Redstone Arsenal, AL 35898

Contract Number : DAAH01-03-C-R129
CDRL AOOl

Government Technical POC
Lisa B. Cannon

Invariant Technical POC
David R. Anderson

Invariant Corporation
4800 Whitesburg Drive #30-353

Huntsville, AL 35802
Phone: (256) 885-9794

December 31,2003

oRPORATioN REPRODUCED FROM
BEST AVAILABLE COPY

ABSTRACT

This final report summarizes the activities of Invariant Corporation in its support

of the Army Aviation and Missile Command (AMCOM) under contract DAAH01-03-C-

R129. The effort was a Phase I SBIR entitled A02-158, Infrared Seeker Performance

Metrics. The report details the technical effort performed to include identification of

infrared sequences and the ground-truthing of these sequencies. Signature metrics were

identified and developed to process statistical differences between target and clutter.

Software was developed to execute the metrics and was a deliverable under this effort. A

tracker and detection prediction methodology study was identified and a validation plan

for this methodology is detailed. This effort was also supported by Dynetics which was a

subcontractor to Invariant Corporation on this effort.

APPROVED:

David R. Anderson
President

TABLE OF CONTENTS

L INTRODUCTION ■ 9

2, TECHNICAL OBJECTIVES 9

3, TECHNICAL WORK 11

3.1 INFRARED IMAGE SEQUENCES 11

3.2 METRICS 16

3.2.1 EXISTING METRICS16

3.2.2 NEW METRICS 18

3.2.3 TRACKER PERFORMANCE METRIC 33

3.3 SIGNATURE METRIC SOFTWARE TOOL 36

3.4 GROUND TRUTH PROCESS ..41

3.5 METHODOLOGY FOR SEEKER PERFORMANCE PREDICTIONS 42

3.5.1 PERFORMANCE PREDICTION METHODOLOGY PROBLEM 42

3.5.2 PERFORMANCE PREDICTION SOLUTION 43

3.5.3 DEVELOPMENT OI- BASIC NEURAI. NETWORK APPROACH 44

3.6 VALIDATION PLAN 51

3.6.1 MDTP METRIC Tool 51

3.6.2 MDTP PROBABILITY OI DI;TI;CTION PRI:DICTION METHODOLOGY 52

3.6.3 MDTP PROBABILITY oi TRACK PREDICTION METHODOLOGY 52

3.6.4 MDTP MODI;L VALIDATION 55

3.6.5 VALIDATION CRITI;RI A 58

3.6.6 STATISTICAI. ANALYSIS 59

4, TRACKER ALGORITHM 69

5, CONCLUSIONS 71

LIST OF FIGURES

Figure 1. Phase I Block Diagram 10

Figure 2. Ambient Temperature Histogram 12

Figure 3. Relative Humidity Histogram 13

Figure 4. Image Sequence Time-of-Day 14

Figure 5. Image Sequence Season 15

Figure 6. Correlation Area 20

Figure 7. High Contrast Target 22

Figure 8 Correlation Surface of High Contrast Target 22

Figure 9. Low Contrast Target 23

Figure 10. Correlation Surface of Low Contrast Target 24

Figure 11. Track Correlation Metric Output for High Contrast Target 25

Figure 12. Track Correlation Output for Low Contrast Target 26

Figure 13. Sobel Filter Results 28

Figure 14. Image With Target and Background Gates Superimposed 30

Figure 15. Tracker Performance Metric 34

Figure 16. Track Correlation Metric Comparison to Tracker Performance 35

Figure 17. Image Metric GUI 37

Figure 18. UML Object Interaction 41

Figure 19. TAGtool Screen Capture 42

Figure 20. Linear Spatial Filter 44

Figtire 21. General Mtilti-Layer Perceptron Architecture 46

Fipire22. Signal-Flow Highlights of Output Neuron j 47

Figure 23. Essential Steps for Validation of Models and Simulations 54

Figure 24. Validation Methodology 55

Figure 25. Graphical Comparison with Confidence Intervals ; 59

Figure 26. Validation Results and Types of Errors 61

Figure 27. CI Width versus Number of Test 64

Figure 28. CI Width versus Pd 65

Figure 29. Effect of Number of Tests on OC Curve 68

1. Introduction

Advances in imaging infrared (IIR) technology and demonstrations of this

technology as a capable means of target discrimination, automatic target recognition

(ATR), and auto-tracking have led to the development of numerous IIR weapon systems.

No doubt, as the technology continues to improve, additional Department of Defense

(DoD) time and resources will be spent in an effort to improve the detection,

classification, and guidance capabilities of US assets. Although excellent analysis tools

exist for describing the imaging sensors themselves, there are no adequate methods or

tools currently in existence for characterizing the performance capability of the sensors

against targets in a variety of backgrounds. Thus, new and improved detection and

tracker algorithms continue to be developed, but with no technique for predicting their

potential performance enhancement.

Performance metrics and related analysis tools have been developed for man-in-

the-loop applications that adequately match predicted performance with human

perception test results. While similar metrics have been developed based upon auto-

detection and tracker test results, a reliable method using these metrics in predicting the

performance of trackers and auto-detection algorithms for a variety of targets in diverse

backgrounds has not been realized. As the US Army moves forward in its use of IIR

technology, development of a tool capable of predicting sensor performance is essential

for optimizing algorithm development and seeker system design. From a defensive

standpoint, as foreign armies implement IIR capabilities into their weapon systems, such

a tool is also necessary in mitigating risk to US ground vehicles and troops.

2. Technical Objectives

The overall objective of this effort was to investigate and develop metrics and

methodologies which can be used to predict the auto-detection and tracking performance

of imaging infrared missile seekers that employ staring focal plane arrays, and develop a

plan to validate the performance metrics. The specific objectives of the proposed effort

are in Figure 1 and are listed below.

1. Identify a set of infrared image sequences that represent a variety of background
conditions, sensor resolution, and sensor sensitivity.

2. Identify existing signature metrics and formulate new ones.

3. Develop a software tool to use for calculating signature metrics.

4. Ground-truth the image sequences identified in objective 1 and calculate the
signature metrics for each image sequence.

5. Develop a methodology for predicting auto-detection and tracker performance
based on the signature metrics.

6. Develop a plan to validate the performance metrics.

r Phase 1

Identify Sources
of IR Images

Divide
Sequences into

Two Sets

Ground Truth
SetllR

Sequences

IdentiP/
Existing
Metrics

Develop Metiic
Computing

Tool

Add New
MetHcs
to Tool

Compute Metrics
Using Metric Tooi

Fonnulate
New Metrics |

Develop Methodology for
Performance Prediction

Develop Plan for Validation
Metrics in Phase 2

Figure 1. Phase I Block Diagram

10

3. Technical Work

3.1 Infrared Image Sequences

The first portion of this effort was to identify a comprehensive set of infrared

image sequences for metric processing and then later in the Phase II to support the tracker

and Autonomous Target Detection (ATD) prediction tool validation. The goal was to

identify sequences with various backgrounds, sensor sensitivity, and resolution to ensure

the fumre analysis results were not biased to just one sensor type or a single

environmental condition. Parameters that cause variations in background, sensor

resolution, and sensitivity were identified and this information was recorded for each

image sequence selected. In all, 714 image sequences were identified. The sequences

are collected from both tower test and captive flight tests (CFT). Each sequence contains

anywhere from 300 to 8000 images. Most tower test sequences have targets at a constant

range, while the CFT sequences begin at an initial range and then close on the target.

The sequences were selected from several sensors that have different resolution and

sensitivity. First, let's summarize the weather conditions for the images sequences

selected.

For each sequence, various weather conditions were recorded while the data was

collected. These parameters varied somewhat depending on the location of the test and

the instrumentation that was available. The main information recorded was location,

time-of-day, season, ambient air temperature, relative humidity, parametric pressure,

wind speed, wind direction, dew point, and precipitation. At some sites, soil temperature,

visibility, and solar radiation were also recorded. All weather related parameters are

stored in a database that is a deliverable of this Phase I. To show variability, some of

these parameters are plotted below. Figure 2 is a histogram of the ambient air

temperature of all of the sequences. There is a large concentration around 75 to 80

degrees F, but several of the sequences were around 90 deg F and during some of the

winter scenarios, there were some temperatures in the upper 30's.

11

B
3
a:

Ambient Temperature

30 35 40 45 50 55 60 65 70 75 80 85 90 95
deg (F)

Figure 2. Ambient Temperature Histogram

Figure 3 is a histogram of the relative humidity of the selected sequences. There

is a concentration of sequences with high relative humidity but there is also a large group

of sequences varying between 30 and 100 percent.

12

Relative Humidity

200

160

120

80

40 nniiii
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent

Figure 3. Relative Humidity Histogram

One of the most important aspects of an image sequence is the time-of-day in which the

data was collected. Target to background signature will obviously vary greatly from the

middle of the night to the heat of the day. Figure 4 shows the time in which the

sequences selected were generated. Typically, most data is collected during the day,

either morning or afternoon. But there is a decent percentage of this data that was

collected at night.

13

p 200

Time-of-Day

D Morning

■ Afternoon

■ Night

Figure 4. Image Sequence Time-of-Day

The final illustration is the season in which the data sequences were collected. Figure 5

identifies the number of runs collected during the different seasons. Unfortunately, there

were no sequences collected during the summer months in the set that was identified.

Nonetheless, several of the spring sequences were late in the season and had very hot

summer-like conditions.

This section lists just a subset of the weather conditions recorded during data

collection. Additional weather parameters were stored and are available for each

sequence in Appendix A.

14

Season

500

C s 3S

Fall Winter Spring Summer

Figure 5. Image Sequence Season

Sensor sensitivity was the next important parameter to be considered when

identifying the infrared sequences. This is usually measured by examining sensor fixed

pattern noise and temporal noise or Noise Equivalent Delta Temperature (NEdT). For

various reasons, these numbers are not always publicized. The sequences identified in

this effort were generated by 4 separate sensors. The database delivered with this report

identifies the sensors and gives a sensitivity performance range. NEdT for the different

sensors varies from just below 50 mK to greater than 100 mK.

Finally, sensor resolution is an important consideration that provides variation in

the image sequences. Resolution includes spatial pixel resolution, spectral resolution,

optical resolution (blur) and grayscale resolution. The sensors used varied from 512 x

512, 384 X 512, and 256 x 256. Grayscale resolution was both 12 bits and 14 bits per

pixel. The instantaneous FOV was different for each of the sensors as was the optical

blur. All image sequences were collected using midwave infrared sensors. There are

currently two requests for long wave infrared data, but at the completion of the Phase I,

no LWIR starring focal plane array data had been obtained. But even though each of the

sequences were operating in the midwave band, they all operated in a slightly different

15

sub-region of the 3 to 5 band. The variation in spectral band will generate variation in the

resulting sequences.

All sequences in Appendix A have been ground-truthed. The proposed Phase I

option is to obtain and ground-truth additional infrared sequences. Due to pending CFT

data collect, good long wave infrared (LWTR) sequences should be available by that time.

3.2 Metrics

3.2.1 Existing Metrics

The existing metrics identified are traditional first order metrics that compare

basic statistics between the target area and the background around the target. The three

classical metrics are ATRSS, ATmodified, and SCRRSS- The standard statistics used by all

three are mean temperature of the target area and background, and the standard deviation

in a specific area. The metrics compare the statistics calculated in a target region to the

statistics calculated in the background area. The similarities of these statistics are the

basis for the metrics. The classical metrics all define the target area and the background

area the same. The target area in which the target statistics are calculated is defined as

the bounded box around the target. It is identified during the ground-truth process.

Ground-truthing will be discussed in detail later in this report. An area around the target

gate is evaluated for background statistics. Typically, the background area is the ratio of

3 times the target height and 2.5 times the target width. The classical metrics are

described in the following sections.

3.2.1.1 Delta Temperature Root Sum Squared (ATRSS)

This metric takes the delta temperature between the mean pixels in the target area

and the mean pixels in the background area. It also calculates the standard deviation of

the pixels in the target area (or). These two terms are individually squared, summed and

then the square root of the sum formulates the ATRSS metric in Equation 1.

16

^'^Rss = \(^T)- + al Equation 1

3.2.1.2 Delta Temperature Modified (ATmodified)

This metric is very similar to the ATRSS metric. It calculates target and

background statistics in the same regions of interest. The only difference is background

clutter standard deviation is also calculated in the background area. It is subtracted from

the target sigma before being squared and then added to the square of the delta

temperature term. The addition of background clutter sigma is very important since

background clutter will have a significant impact on tracker and ATA performance.

Equation 2 describes the ATmodined calculation.

A7:„„,,,., = 4{^Tf + {(j,-Gj Equation 2

3.2.1.3 Signal to Clutter Ratio (SCRRSS)

This metric has a strong dependence on the sigma of the clutter around the target.

It is the classical signal to clutter ratio, but uses ATRSS for the signal term instead of

simply AT. This is important since even in the absence of target mean difference from

the background, target sigma alone is a significant contributor to the ability to track or

detect targets. Equation 3 describes the SCRRSS calculation.

5(7/j _ ^TRSS Equation 3
(Jr

Classical metrics have been used for years, but to date still do not do an adequate

job of predicting tracker performance. Trackers respond to spatial structure and

17

similarities between the target and the background. These metrics do not allow for

spatial frequency contribution and are purely first order statistics. They also process on a

single frame of data. This is inconsistent with the auto-tracker process of using multiple

frames of data to generate a history of the target information. Unless otherwise

incorporated into time average filter or other custom process, temporal information is

negated with these metrics.

3.2.2 New Metrics

The signal to clutter metrics described above are effective for a low level

estimation of IR seeker performance. But often these metrics are not a good measure to

describe the impact of the target-background signature has on the tracking process. More

complicated image metrics are required to support this analysis. Tracker and ATD

algorithm metrics can be developed that match more closely the image processing that is

performed by the trackers being evaluated. Most imaging auto-tracker and ATD

algorithms implemented in systems today are either company proprietary or classified.

For this reason, no specific algorithms will be described. Instead, generalizations can be

made with the knowledge of existing tracker and ATD implementations in open

literature.

Trackers are typically categorized based on the type of image processing

performed. They all have one thing in common. They attempt to maintain track gates

around the target of interest, and they attempt to maintain an aimpoint on some portion of

the targfet. The first type of tracker is a hot spot tracker. This is the simplest tracker type.

The algorithm processes the image, and finds the hottest pixel intensity. In some cases,

the image is pre-processed with a boxcar averaging filter, to eliminate noise. But in

either case, the hottest pixel in the scene or processed scene is classified as target. This

pixel is tracked and the aimpoint is placed on the hot spot.

The second type tracker is statistical based. Target and background means and

sigmas are calculated. The tracker will evaluate the similarities between the statistics and

18

then classify pixels in the scene as target and background based on the calculation.

Bayes' law is often used to perform the classification.

The third type of tracker is a feature-based tracker. Typically, the image is pre-

filtered using some technique. There are several filters to choice from, but the Sobel

edge enhancement filter seems to be a popular choice. It does a very good job of

enhancing edges in the image, and can be implemented using 2 3x3 convolution masks.

This makes real-time execution possible in a wide variety of hardware platforms. Using

the processed image, features are extracted using some segmentation criteria. A database

of features is generated and maintained that describes characteristics of each of the

features. This often includes feature position, magnitude, direction, size and velocity.

The features are classified as target or background based on criteria that vary from tracker

to tracker. These features are used to determine the track gate size and aimpoint.

The final tracker is a correlation-based tracker. This type of tracker uses target

template information, often generated by the gunner at lock-on, and maintains the track

gate on the target. A correlation technique between the target template and the sensor

image is performed to calculate the offset of the target in the scene from its previous

location. There are several methods of performing the image correlation but given the

same template and image correlation area, they will all generate similar results.

ATD algorithms typically use a target template and search the entire image to

identify features that match the template. The image is often preprocessed to extract

edges or high frequency components. Many ATD algorithms use a process similar to the

correlation-based tracker, but search for a good correlation in the entire image instead of

a local region around the previous track location.

The goal of this effort was to identify at least one new metric that closely matches

the fundamental track and ATD algorithms described above.

19

3.2.2.1 Track Correlation Metric

The track correlation metric (TCM) correlates between the current target template

containing previous target information and a correlation search region. The search region

is defined by a box around the target plus a correlation search area. Figure 6 shows an

example of the search area outlined with the green box. The blue box outlines the area

that defines the target template.

Figure 6. Correlation Area

The target template is a 2 dimensional image that has j rows and i columns. The

correlation search area has n rows and m cols, n is 3 times the size of j and i is 3 times

the size of m. The first step in this metric is to perform a normalized correlation between

the correlation search area from (n, m) to (n+j, m+i) where n and m are initially zero and

20

the target template. To normalize the output, the mean and sigma value must first be

calculated for the correlation search area. The mean is defined as pc and the sigma is Oe.

Then the mean and sigma is calculated for the target template. These are defined as fi,

and Ot respectively. The normalized cross correlation is defined by Equation 4. The result

is output to a matrix called the correlation surface. This surface is populated with results

as you change the starting points n and m to change the location of the correlation in the

correlation search area.

I./JC„-//,)x(>',.,,.„-//c) Equation 4
corr„„ _ ^_

Below are two examples of the resulting correlation surface. Figure 7 is the

output of an InSb MWIR sensor. The target is hot with respect to the background and is

outlined by the blue box. When performing a normalized cross-correlation with this

input the result should be a correlation surface with a sharp peak. The target area is not

well correlated with surrounding clutter, so the correlation surface values should be small

off the correlation peak. Figure 8 shows the correlation surface result after processing the

high contrast image. As expected, values around the peak in the surface quickly go to

zero, and there are no secondary peaks anywhere in the surface.

21

Figure 7. High Contrast Target

Figure 8 Correlation Surface of High Contrast Target

22

The next example is a low contrast target on somewhat correlated clutter. Figure

9 shows the IR image with the target outlined in blue. After performing the normalized

cross-correlation, Figure 10 shows the resulting correlation surface. As expected, the

surface has the peak in the center resulting from the correlation between the target

template, and the target itself. But the slope from the peak is less than the previous

example, and then the values ramp back up away from the peak. This indicates clutter

that is correlated to the target.

Figure 9. Low Contrast Target

23

Figure 10. Correlation Surface of Low Contrast Target

The trick now is to use tlie information from the correlation surface to generate a

metric value that is the result of the target being correlated to the background. Since the

surface is normalized, you will always have a peak value of the target template

correlating with the target in the correlation search area. There are also values

immediately around the peak that are a result of the target correlating with itself. Since

the real interest is to determine how alike the target is to background, the values of

interest are where the clutter correlated to the target template. Remember that the target

template is a historical snapshot of the actual target, hence the perfect correlation.

So to generate the metric value, the correlation surface away form the peak is

examined. If there is a value anywhere in the correlation surface that has a large value

that means it is highly correlated with the background. Lower values in the correlation

surface indicate poor correlation. This is opposite from what is expected from a single

metric value, since a 1 should indicate a high likelihood of distinguishing target from

background, and a zero indicates the target and background are highly correlated.

24

Therefore, the largest value in the correlation surface that is outside the peak region is

subtracted from 1.0. The result is the final metric value.

Track Correlation Metric (TCM) = 1.0- correlation peak(outside center region) Equation 5

Figure 11 is an example of the TCM output. The target is high contrast just off a

road as indicated by the red arrow. The metric value is around 0.8 for the entire sequence

indicating there is a high probability of a successful track on this image sequence.

Figure 11. Track Correlation Metric Output for High Contrast Target

Figure 12 is another example of the TCM output. The target is low contrast and

identified by the red arrow. The metric value is around 0.4 to 0.6 for the entire sequence

indicating there is a medium to low probability of a successful track on this image

sequence.

25

Figure 12. Track Correlation Output for Low Contrast Target

The tracker correlation metric uses a target reference that is filtered over time.

Since auto-trackers react to temporal changes in the target area, it was important that the

metric is sensitive to temporal changes as well. This is true because they use historical

target and background information for discrimination and classification. For this analysis

of the tracker correlation metric, the target template was a stored representation of the

target area from previous frames. If there is a significant change in signature from one

frame to the next, the metric should perform well when predicting the effect on tracker

performance. Since this metric uses the fundamental algorithms used by a correlation-

based tracker, the metric value should do a fairly good job of predicting the performance

at that class of tracker.

26

3.2.2.2 Sobel Metric

Another metric under consideration for track analysis is based on the Sobel edge

enhancement mask\ It is used to evaluate the ability to pull edges out of a particular

scene. Equation 6 represents the. horizontal Sobel mask and Equation 7 is the vertical

mask applied to the raw input image in an area around the target gate. These images are

combined to form a magnimde image calculated in Equation 8. Currently, the target area

of the edge image is compared to a background area to generate a signal to clutter ratio.

This ratio is an indication of how well the filtered edges on the target compare to the edge

features in the background clutter around the target. Future work will include a more

exhaustive analysis of the persistence of the edge information. This will form the ability

to predict how well a feature based tracker can maintain consistent edge features over the

duration of track. The filtered images in Figure 13 illustrate the edge enhancement

effects of the Sobel mask.

-1 -2 -]

0 0 0

1 2 1 Equation 6

Horizontal Sobel Mask

-1 0 1

■2 0 2

-1 0 1 Equation 7

Vertical Sobel Mask

magnitude^ = ^Gx'+Gy Equation 8

27

Figure 13. Sobel FUter Results

3.2.2.3 Bayesian Based Signature Metric

The Bayesian metric describes the separabiUty of the target and background based

on their statistical signatures (i.e. it is a relative metric). The metric assumes a ground-

truth process has identified the target. The output of the metric is a value between 0 and

1. Values near 1 represent targets that are very separable from the background and values

near 0 represent targets that are very similar to the background.

The Bayesian metric classifies pixels based on their similarity to statistical models

for the target and background. The metric gate (MG) of the Bayesian metric has two

components, the target pixel gate (TPG) and the background pixel gate (BPG). The TPG

is centered on the target and matched to the size of the target. The BPG is also centered

on the target but has larger than the size of the TPG (typical value of 3 times the TPG

dimensions). The BPG excludes the area designated by the TPG. The target statistical

model is formed based on the pixels inside the TPG. The background model uses only

pixels inside the BPG. The mean, standard deviation, and correlation coefficient are

calculated for the TPG and BPG to determine the bivariate normal distributions for the

target and background pixels. Calculation of the correlation coefficient requires the user

28

to specify the offsets between the current pixel and its statistical pair. This offset is

configurable (typical values are an offset of 1 in both the horizontal and vertical

directions). These statistics can be established on a single frame or recursively updated

over several frames to provide a means of memory and adaptation in the statistical model.

Once the statistical models are established, each pixel within the MG can be classified

according to its probability of belonging to either the background or target class based on

Bayes' law. The metric is then calculated by the average success of correctly classifying

target pixels as belonging to the target class and background pixels as belonging to the

background class.

The Bayesian metric classifies pixels within a region as belonging to one of two

groups, target or background, based on Bayes' law. The two groups are assumed to

follow bivariate normal distributions with characteristic parameters being the mean,

standard deviation, and correlation coefficient.

The MG is centered on the designated target position via the ground truth

information and the mean, standard deviation, and correlation coefficient are.calculated

for both the target and the background areas. On the current or subsequent frames (user

configurable), the likelihood of each pixel belonging to either the target or background

class is calculated.

The TPG and BPG are each assumed to have pixel pairs that can be described

with the bivariate normal distribution function. A spatial relationship defined by the

horizontal and vertical offsets (XOFF and YOFF) is used to pair pixels together. The

same offsets are used for the target and the background areas. It is important that the

offsets not exceed one-half the target size so the majority of target pixels are paired with

other target pixels. XOFF and YOFF are parameters specified by the user.

To determine the target and background statistical parameters, rectangular gates

TPG and BPG are used (Figure 14). The user specifies the size and initial locafion of the

TPG and BPG. The centers of the two gates are located at the same position in the image.

The pixels in the TPG are excluded from the BPG calculations; therefore, the BPG must

be larger than the TPG. Within the gates, pixel pairs are formed and the statistics

29

computed. The statistics calculated are the mean pixel value, standard deviation, and

correlation coefficient.

Figure 14. Image With Target and Background Gates Superimposed

Each pixel is classified by determining its target likeUhood, L,, in terms of the

prior probabilities for the target and background, P{G,) and P{GI,), and the conditional

probability distribution functions for the target and background, ^(viVj | GJ and

P{v^V2 I Gj), as shown in Equation 9. The v^ term is the value of the current pixel being

evaluated. The vj term is the value of the statistical pair to vj located XOFF and YOFF

from the location of vj. The G, term is the group of target pixels designated by the TPG

and Gj is the background pixels inside the BPG excluding the TPG.

L,=P(G,|VIV2) =
P{v,v,\G,)p{G,)

P{v,v,\G,)p{G,)+P{vyV,\G,)p{Gt,)
Equation 9

30

The prior target probability P{G,) is the ratio of the number of target pixels to the

total number of pixels within the MG as shown in Equation 10. The background term

P{Gh) is the ratio of the number of background pixels (MG-TPG), to the total number of

pixels in the MG as shown in Equation 11. The values of P{G,) and P{G^) represent the

probabilities of a pixel belonging to the target or background group without knowledge of

its value.

P{G,)=
nxm

NxM
Equation 10

PiG.h
NxM -nxm

NxM
Equation 11

Equation 12 and Equation 13 are the bivariate normal probability distribution

functions for the target and background respectively and represent the probability of

observing the values v\ and v., given that the pixels belong to a specific group. For a

given pixel, the same spatial relationship is used to compute the target likelihood as was

used to compute the distribution functions. Therefore, if the pixel and its pair have values

near that of the target mean, the target likelihood is increased. Further, if the relationship

between the pixel pair values is similar to that defined by the target correlation

coefficient, the target likelihood would also be increased.

/^v.vjc,: rCXfi-

2;rorVl-p, 2^^(i-pr)
((v, -M, Y - 2p, (^■, -M, h'l -M,)+(v; -//,)

Equation 12

/^v,vjGj =
Ijra;,^-

Equation 13

31

Based on Bayes' rule and the fact that there are only two groups, pixels with a

target likelihood value greater than 50% are classified as belonging to G,. Using this

rule, each pixel in the MG is associated with one of the two classes.

The Bayesian metric (PBay) is the average success of correctly classifying target

and background pixels. The success of correctly classifying target pixels is the ratio of

correctly classified target pixels within the TPG (NCT) to the total number of pixels in the

TPG (NTPG)- The success of correctly classifying background pixels is the ratio of

correctly classified background pixels in the BPG (NCB) to the total number of pixels in

the BPG (NBPG) as shown in Equation 14.

P... = '''CT '^TPG'^'^CB '^ BPG Equation 14

The Bayesian metric has a value of 1 when all target pixels and background pixels

are correctly classified and has a value of 0 when all pixels are incorrectly classified. If

all target pixels are correctly classified and all background pixels are incorrectly

classified, the metric has a value of ¥1.

In summary, the Bayesian metric is a means for quantifying the separability of

target and background statistics. There are several parameters in the metric that are

configurable such as the distance to the pixel pair (XOFF and YOFF) and the means of

establishing the statistical model (e.g. models based on current frame or recursively

updated). After exercising the metric against a large data set the configurable parameters

should be studied in order to provide optimum performance.

3.2.2.4 Signal to Clutter Measure

.2 The Signal to Clutter Measure (SCM) is a metric that predicts the probability of

detecting a target in an infrared scene. It was developed by Margaret A. Phillips and

Richard F. Sims of the AMCOM Research, Development and Engineering Center. This

32

metric takes the target signature information, as defined during the ground-truth process,

and performs a correlation with the entire image. This is greatly different then metrics

that compare target area statistics to local statistics around the target area. The process

for performing the correlation is very similar to the TCM correlation process. It uses a

snap-shot of the target area on a given frame, and performs a normalized cross correlation

with the entire scene. Correlation peaks outside the target area are examined. If there are

peaks inside the clutter area, then there are clutter features that could cause an ATD

algorithm to get confused and mis-classify a portion of the background as target. If there

are few or no correlation peaks in the clutter area, then the target signature is not

correlated to the clutter and there should be a higher probability of a successful detection.

The metric also examines the variance in the complete correlation surface. If there is

variation in the correlation surface, this too would lower the probability of a successful

detection.

The output of the SCM is a floating point number between 0 and 1 which is

consistent with the desired output since it is normalized. A 1.0 would indicate a good

probability of detecting the target while a 0.0 indicates a very poor probability of target

detection.

3.2.3 Tracker Perforraance Metric

In order to grade tracker and ATA performance, a tracker performance metric

(TPM) is used that compares the ground truth gate to the gate generated by the seeker

algorithms. The TPM used for this analysis independently compares the ground truth

gate width and height to the tracker width and height. To perform this comparison, a

normal distribution is generated using the center of the gate as the mean, and the gate size

as the sigma of the distribution. The overlapping area of the two distributions is

calculated. Equation 15 describes the TPM calculation where firk(x) and firk(y) are the

normal distribution functions for the track gate x and y dimensions, and f„t(x) and fgt(y)

are the normal distributions for the ground truth gate x and y dimensions.

33

'p»'=Z^/„.Wx/„W-Ii/J^)x/.,W Equation 15

Since the area under each curve is 1.0, perfect overlap would result in a value of

1.0. Any mis-match would result in a lower performance number. A normal distribution

is used to weight the center of the gates stronger than the gate edges. The normal

distribution will give more emphasis on the location of the center of the gate to ground

truth, and less on gate size. Shown in Figure 15 are plots of two hypothetical

distributions. The track gate width is smaller than the ground truth gate width but the

gate height is very similar. The TPM is used to grade system performance that will

ultimately be compared to the output of the metric tool. This information will be input

into the neural network and used to draw a correlation between the actual performance of

the tracking system and the metric values.

Track Gate
Groiind-truti
Gate

f:^l/,»x/.,w

so 70

Gate Width

10 UO ISO 170 i»o

1"^—TucfcOalc —frraan I

Performance
Metric

{fjy>^\
Gate Height

100 11* 120 13* 140 150 ICO 170 »0 UO 100

I —-TtJClMf Olle —OTGlle |

Figure 15. Tracker Performance Metric

34

Since the metric values are a measure of how well a tracking system will perform

given a certain target to background situation, the metric values should have some

relationship with the acmal values as measured by the TPM. Or potentially a

combination of metric values with associated costs values will be used to predict system

performance. In an example case, the track correlation metric was used to compare

against actual tracker performance for a specific infrared sequence. These sequences were

processed using the track correlation metric and the tracker evaluated using the TPM.

The track correlation metric data was compared to the actual system performance to

determine if there truly is some relationship between this metric and actual tracker

performance. Figure 16 shows this comparison. It is not expected that these plots would

match exacdy, but you can see a good correlation between the actual tracker performance

and the metric output.

Figure 16. Track Correlation Metric Comparison to Tracker Performance

Performance on the autonomous target acquisition algorithm is more

straightforward. The output of the ATA is either an X, Y aimpoint somewhere in the

scene, or an estimated gate size and location. In the case where the ATA calculates a

gate size, the TPM mentioned above will be used to calculate the performance of the

35

system. A metric value of 1.0 indicates perfect gate placement relative to ground truth

while a metric value of 0.0 indicates no overlap of the normal distributions. If the ATA

outputs an aimpoint only, then the performance will be limited to a 1 or zero, depending

on whether the ATA placed the aimpoint successfully inside the ground truth gates or

not.

3.3 Signature Metric Software Tool

The product developed under this effort is the Metric Analysis Tool. It reads

standard image sequence formats, as well as raw and/or binary formats. It is written in

C++, and a standard metric object framework was established to facilitate the addition of

metric routines in a plug-and-play type environment. It has the ability to calculate the

metrics and output results in various forms including plots to the screen and in ASCII

output files. In Phase II, it will interface with the performance prediction code developed

under that effort. The metric tool has VCR-type commands such as play, frame step,

rewind, and stop, to allow viewing of the image sequences as they are processed. The tool

contains the ability to select a large number of image sequence to process, and be able to

select the metrics that will be executed. It can also be run from the command line with

no GUI interaction for overnight or batch processing. It was developed using platform-

independent libraries compatible with Windows, Linux, and SGI platforms.

The Metric Software Framework will provide an open-source, modular, scalable

architecture for software development of additional metrics and interfaces to performance

metric algorithms.

The GUI version presents the user with an interface allowing for the creation,

editing, and execution of image sequences analysis. The image sequences and the

metrics to be calculated on these sequences are presented to the user in a list view format.

There are also three data view windows contained in the main program window. These

contain a VCR type viewer to enable viewing of the image sequence, a window

displaying the metric values calculated for each frame in the sequence, and a graphical

representation of the metrics calculated. There are two dockable sub windows involved

36

in the presentation of the analysis configuration, the Project View and the Property View.

An example of the GUI can be seen in Figure

17.

Figure 17. Image Metric GUI

The Project View window shows a hierarchical list containing the image sequence

file names; these are contained under the parent item named "Analysis". The second

parent entry in this list, "Metrics", contains the names of the metrics to be performed.

Image sequences and metrics can be added and removed from the list view

independently. Chcking on an individual entry in the Analysis list will cause the detail of

this image sequence to be displayed in the Property View Window. This action will also

display the image sequence, if it exists, in the VCR window. If the analysis has been run

previously and the output file exists, the metric data will be presented as well.

37

The Property View window displays the individual fields describing the size and

location of the image sequence file. Also presented here are the required video file

decoder, date of the run, output file name, output format, ground truth filename and

ground truth file format.

A menu bar in the main program window provides options for adding metrics to

be calculated, the sequence to process, or a batch mode wherein the user specifies a

directory and all of the sequence files in the directory will be added to the analysis. This

batch mode also fills in the required information pertaining to the sequence, such as

ground truth file, image size etc.

The GUI also provides feedback to the user during analysis execution. This

feedback is provided in the form of a progress bar showing percent completion of the

analysis for the loaded file. If the file contains multiple sequences, a new bar is displayed

as each sequence calculation is performed. The GUI is multi threaded, so the interface

remains usable while the calculations are being performed.

The console version of the analysis program is a separate application. This

version of the tool requires the parameters to be specified either on the command line

individually, or alternatively, aconfiguration file generated by the GUI can be used. This

tool provides no inspection mechanism, but the output file can be examined in the GUI

tool, or using a text or spreadsheet application.

The configuration file generated by the GUI application is stored in the Extensible

Markup Language (XML). Any text editor may be used to edit this file directly, however

this is not recommended. Also, the file may be viewed directly using a web browser.

While not the ideal method of manipulating the file, this ability can be useful when

troubleshooting a configuration file.

The metric tool software is deliverable as either a binary install or as source code

with configuration files. The binary install is currendy only available for Microsoft

Windows, version 2000 and above. The source code install will allow the tool be built

38

for either the Windows or Unix operating systems. New metrics may be buih and used

regardless of the type of install performed.

Multi-platform build support is supplied through the use of Trolltech's qmake

utility. This utility, along with the configuration files it uses, will be supplied with the

installation. The qmake utility generatesa system appropriate make file. This make file

can then be used to build the executable on the target platform. Detailed build

instructions are supplied in the users manual. These instructions provide information

about the environment variables required for a successful compilation.

The GUI interfaces were built using QT by Trolltech Corporation. This is a

multi-platform GUI application development environment. More information on QT can

be found by visiting Trolltech's web site at http:://www.trolltech.com. This web site also

contains detailed documentation on the qmake utility.

The tool also makes use of Invariant Corporations Itools and Codec libraries.

These libraries provide support for the Meta Class structure used in the metrics, the

image sequence decoding, and various utility data structares used. Itools, Codec and the

metric tool in general also make liberal use of the Standard Template Library.

The source code install includes a set of template files demonstrating how an end

user can extend the functionality of the metric tool by creating their own metric

calculations. This is a fairly straightforward process, and is laid out in a cookbook type

description in the metric tool user's guide.

Several environment variables are required for proper execution of the tool.

These variables and their values are described in the users manual.

The metric tool software is composed of two major components and several

supporting components. The two main components are the GUI object and the Analysis

object. The supporting components are the video codecs, the analysis codec, and the

metrics.

39

The GUI component encapsulates all of the operations necessary for displaying

the GUI. This is equivalent to the "main" program in the console application. The GUI

also contains image codecs, the viewer, and also the graph object.

The Analysis component is the "heart" of the metric tool. This object encapsulates

all of the items necessary to provide the metric objects the data they need to perform their

calculation(s). The Analysis object also manages calling the metric objects and asking

them to perform their calculations. The Analysis object contains a list of sub objects

called sequences. These sequences contain all of the information associated with the

image sequences. The required codec, the frame range, the ground truth file, the output

file for the metric values, and the various formats of these items are all kept within the

sequence. The Analysis object also contains a Ust of the metric calculations to be

performed.

The tool has been designed using object-oriented methodologies and implemented

C-t-+. Each of the objects described above correspond to a class in C-i~i-. The metrics are

implemented by taking advantage of the polymorphic characteristics of C++ allowing the

addition of new metrics without recompiling the entire appHcation. The software design

Unified Modeling Language (UML) object interaction diagram can be seen in Figure 18.

40

cnartiD imj*ieics_aasses
ChartNaneCiaseaagram
cnarfiypE UML Class OiaTam
dart Stereotype nClaes Jtag^mi

,;*acl(valjw tJC-vKtor): vM

■Hm<|M<TlcGUl
-currefWnaMitflierame CSrrg
-•CdStafiFranie: mt
-•ecJNiiTiFrames nt
-coaemtne QSmng
-•ecjjoreFilenflnc: QStmg
-BWzneMeonct: QLIMSDX

-•ciectEaMetrtc!: OuiB»
-dMcnpoor: QTetfEat
-furOMt QTme
-g-otraTnjTFlMrna'ne- QSrng
-caitoROOiFiienamr ostnng
-fMuttTaBg-QTao'e

•wcKoFiiename: CSmq

+«(](): V0(3
ffatiFcrwanif >voic]
*faff3ewwie() void
■»rtep():void

tnwaec Decoder

«aau>
■»vWeO<codtr

■+nB#rari5(l imageType'
■HiecocferFoffcodecName cttinov codec "MOeoDecoaer

tnevWeoOecoda

■^ieNew(t vow
■HiieSB^et ^ void "
■♦flieSBveMIfilenam* QElnngj ^\a
■*fliePrrt(;:voic
■*furvknaiy«nmetici: CUst3cyi v»a
■tflieEMt; j void
*pia>«chRun(mrFiiename OStmel voi3
■tfieipnd«(\ vaa
+ne:pCoriErts'j'*iri
■rfieipyitt^) vac
-H0arMeC1ce(]'VQ:R
■HoaoMMetrcif J \^id
■HWTc%eSfleaedM!tnci;)'/ad i
-KemovcAiMmnf) vo3
+«riwFiteCiiaiog='e(;: w c
■KITH): VW3
-KltpuvResuCa^remits' «d: mad -i«<d
•MjpaagG-aotivauw KJ-vetr^-*) sioid

-descnpom: cimg
-lUnOJte citnng

■anaMif iler,ame sBnna
^fcaoMeinctfmetnci tiaiiixcstnn^iivoio
*nr(^w)ld
+a9yBscKarury'*>FiWnans: cstnrg):vDC
«oatWisfytti(Mename: lU. cttnng)' vaa i
'HKiFMename^nienane: iia::citnng]: vod
HeqC8fi9r«rre(catntcnRienan? uU ctmng) vad
♦leqcdfcNametcocccName' ua!::c«nrg^ void
+seqStartFrame[!tarf=farne: imj vOd
■HKJKuffFramettnLmFrame*: intj i«d
■Heqgn(tmF:ierBme(grt)LTidtnJhnien3m5- uu c«nng> vad
■fOUttUFilepamefPlename utt :cinng) ■joa

**naymco<Kc

+open(llerBme cttnng) vad
*iwi»TQ(Tilename cttnng): vo*d
'•fMClArsfy9i(Bnatyiir- Araivw): t)OCl
■KiO{»nafytis(): vwd
♦reteio vac
■*doae(I vad

cneiequeAce

«Ctai«e
♦faquwic*

-filename: CStnng
-cantrato^nename' CStnng
-cooecName: CStirtg
-itanFrame irt
■nuTiFPafneS' nt
-groufxtafliFiiename CStnng
-OLipmFKerame. CStnno

-mgtrtvame? KJ:map<cttinQnoJ>

clmpem-ntaion ciasis

-orrntHsaceri l void
*C8icj!ae(5rajn(mif: RecBngjafQTxndTnjn&, imcframe- Tim8ge<iloat>St voro
-KiijtiutMetrcstfflrDLt □eire3ms;'vDc:
insbnce^)

Ii£Ll ,

tie mgMetn cMeoaas s

■>«n(«MncGUCM»
<Mecacia»»

Figure 18. UML Object Interaction

Development was performed using Microsoft Visual C++ .Net, version 2002.

3.4 Ground Truth Process

To process the image sequences using the identified metrics, ground-truth

information of where the target is in the image had to be obtained or generated. This was

accomplished using the Tracker Analysis and Groundtruth Tool (TAGtool) . The

TAGtool runs under Windows and is a graphical software package (see screen capture

shown in Figure 19) that was developed by Dynetics for AMCOM as a means of quickly

and accurately ground-tiuthing infrared image sequences. To further reduce the time

41

required to process sequences, a correlation capability was used that allowed the user to

ground-truth every tenth frame. The auto-correlator used the user-generated information

to determine the ground-truth data for intermediate frames. All image sequences

identified under this effort were ground-truthed with this process.

3e yiev* [*id« ■2pi.'05 Hdp
m~i!

■;© ■

1SV3030 Zoonv'hO ■

Figure 19. TAGtool Screen Capture

3.5 Methodology for Seeker Performance Predictions

3.5.1 Performance Prediction Methodology Problem

Presently, a comprehensive framework for quantitative analysis of missile seeker

designs does not exist. Although parameters/metrics such as 3D Noise Statistics have

been used to make relative comparisons at the component and system level, the utility of

existing metrics are often system specific and depend on the operational functionality of

the sensor.

42

Classic performance predictions by FLIR 92 and NVTHERM have started with

empirical information such as Johnson's criteria from 1950's and examined system

performance as a function of system design and degradations including blur and noise.

These Man-in-the-Loop (MITL) performance models have been continuously modified

and updated to reflect state-of-the-art in sensors coupled with human operators. The

maturity of the current NVTHERM models allows for relative comparisons of MITL

systems with range errors of ±20% for probabilities of detection, recognition and

identification.

For Tracking and Target Acquisition Tasks, characterizing seeker performance

based on system design and degradations is difficult at best. Algorithms used for these

tasks often use different paradigms and information to process incoming images. As a

result, particular image metrics are often not indicative of relative or absolute system

performance for particular task such as Target Acquisition. The goal becomes to develop

a process for finding and combing metrics capable of predicting task performance. In

light of various feamres and image processing techniques available to accomplish a given

task, useful metrics may vary by task and seeker design.

3.5.2 Performance Prediction Solution

In order for a metric or combination of metrics to be capable of estimating task

performance, the metrics must be mapped to some performance measure. In the case of a

single metric (say Delta T), standard curve fitting might be used to map a particular

metric to a probability of detection performance. However, a combination of metrics may

be more robust in estimating the actual performance. The key is having criteria for

mapping. For a tracking task, the performance might be measured by the overlap of a

target ground truth box and a system track gate. The desired end result would yield

performance estimation for a particular scenario given a particular system and/or a set of

degradations.

A classical Neural Network approach provides a good framework for determining

a mapping from a set of metrics to a desired performance measure. Input to the network

43

may be a set of metrics and/or features available to the system evaluator. A mapping is

generated based on the performance measure used to grade a particular seeker task.

3.5.3 Development of Basic Neural Network Approach

To begin, a weighted sum of the image metrics might be used to produce an

output as described by Equation 16 and visualized by Figure 20.

>' = Z^'.^' Equation 16

Wtights

Figure 20. Linear Spatial Filter

Here the mapping between a set of input vectors (image metrics) and desired

outputs (performance measure) is known empirically for selected data. The task is to

determine the weight vectors that map input vectors to appropriate output.

An error signal may be defined as the difference between the weighted sum y and

a desired output d generated from a specific performance measure (i.e. Track Quality).

e = d - y Equation 17

Minimizing the cost function defined in Equation 18 provides a basis for

minimizing the mapping error between a set of image metrics and a performance measure

(Track Quality). Here E is used to represent the statistical Expectation operator.

44

J =—E\e^] Equation 18
2

Minimizing Equation 18 with respect to the weights in Equation 16 leads to the

well known Weiner-Hopf equations for determining the weights Wj. The Method of

Steepest Descent is often implemented rather than solving the Weiner-Hopf equations

directly for the unknown weight vector.

Equation 19
Y,WjE[XjX;^] = E[dXi^] , k = 1,2,..;P

Weiner-Hopf Equations

The Method of Steepest Descent determines weights via an iterative scheme

illustrated in Equation 20 until changes are no longer significant. Here, n+1 represents the

updated value of a particular weight and n represents the previous iteration.

w^ (n +1) = w\ (n) + T] E[dk;^]-'^WjE[XjXi^
Equation 20

, k = \,2,...,p

However, the Expectation operator E in equations 17 and 18 indicates the

statistical autocorrelation and cross-correlation between the input vectors and the desired

output is required. In many cases these correlation functions are not known. The ieast-

mean-square (LMS) algorithm addresses this limitation by implementing instantaneous

estimates of the correlation functions. The net resuh leads to a modification of Equation

20 as follows.

\^\(n + 1) = w,(n) + Tj[d{n) - yin)] , k = \,2,...,p

, Equation 21 where, ^

y(n) = Y,<n)jX(n)j

45

^^w

Again, this is an iterative technique that continues until changes in the weight

vector are no longer significant.

So far these approaches are applicable to linear filtering problems. For potential

non-linear mappings of the image metrics to a performance measure, the LMS algorithm

may be generalized via the backpropagation algorithm for Multi-layer Perceptrons.

Figure 21 illustrates the general architecmre of a neural network with a single hidden

layer.

Input Layer Hidden Layer
Output Layer

Figure 21. General Multi-Layer Perceptron Architecture

46

yo(")

Viin) O- —►— -o—
-1

-o- O ^:

Figure 22. Signal-Flow Highlights of Output Neuron j.

The following relationships are illustrated by the signal flow graph in Figure 22

for a neuron in the output layer. Development of the back propagation algorithm begins

by defining an error signal for any neuron in a similar manner as for the LMS algorithm.

ej(n) = dj-yj(n)

where

Equation 22

ej(n) = error signal at neuron j;

yi(n) = observed output at neuron j;

dj (n) = desired out put at neuron j;

47

n = current input pattern

The cost function is now defined as

J=-E[e^{ny Equation 23

and Cj represents the instantaneous error received after each input.

The total input at neuron j is expressed as

^'j{n) = Y,^'jii.n)y^{n) Equation 24

The output at neuron j is a function of Vj(n),

yj=(p{v.{n)) Equation 25

where (p(x) is the activation function of the neuron.

Applying a similar methodology as in the LMS approach, the weight updates are

proportional to the instantaneous gradient.

37 _ dJ dej{n)dyj{n) dv^{n)

dwj- de.(n) dXj (n) dv^ (n) 3viv (n)
= -ej(n)(p'[Vj(n)]yj(n)

Equation 26

As before, the update rule is

Wj.(n + l) = Wj.{n) + AWj. Equation 27

where

48

AHV. (n) = -T]
ay

dwj, (n)
= riSjin)yjin)

and

Sj(n) = ejin)(p'[Vjin)]

An important element for calculating the update is the derivative of the activation

function (p'[x]. The sigmoid function used by Rosenblatt is a smooth approximation of

the step function.

cp[x] = ^ Equation 28
l + exp[-x]

The sigmoid function is continuous for all values of x and ensures a well behaved

derivative for the preceeding equations.

5j(n) is defined as the local gradient. If neuron j is in a hidden layer, calculation of

ej(n) is not straightforward. From Equation 25,

dJ(n) ^ej(n) _ dJ{n) Equation29

^'~ dej{n)dy^{n)~ dyj(n)

For clarity. J is defined at the output layer as

J=-Y.k(n)f Equation 30

with the subscript k denoting an output layer as opposed to the input layer j. From

Equation 28, the goal is to determine the gradient of the cost function with respect to the

hidden neuron y,.

49

where

ek = dk - (p[vk(n)]

and

Vk(n) = I Wkj(n) yj(n).

Equation 31

Simplifying, the gradient becomes

ay(«)
av. («)" X ^A ^"^^ [^'i (")^'V (")

Equation 32

Substituting back into Equation 31,

Awji = ri5j(n) y,(n)

where

8j(n) = (p'[Vj(n)] I 6k(n) WkjCn)

and

5k(n) = I [ek (n)] (p'[Vk(n)].

Equation 33

Synaptic updates depend on whether the neuron is in the output layer or a hidden

layer. Output neurons use Equation 31, which is similar to the update rule used for the

50

LMS approach. Hidden neurons use Equation 32 where the local gradient depends on

synaptic activity in the output layer as well as synaptic activity for the hidden neuron.

The end result is an extension of the update rule for the LMS algorithm. For LMS,

weighted inputs are summed at a single node or neuron. For the Multi-Layer perceptron.

the error is 'propagated back' through the network to provide instantaneous estimates of

correlation functions. The increased computation complexity provides robust

performance for mappings that are not linear.

3.6 Validation Plan

This section presents the requirements and process for validation of the Metric

Detection/Track Prediction model (MDTP). MDTP is a generic analytical IR detection

and track performance prediction model described in this report and proposed as part of

the Phase II follow-on. MDTP validation will be accomplished by comparing the

model's metric based detection and track predictions to field test results utilizing tactical

and generic tracking algorithms and validated analytical detection models. A

comprehensive set of IR imagery, previously collected, has been identified under this

effort that encompasses various sensor/seeker systems engaging an array of targets under

various environmental conditions. This section describes the methodology for utilizing

this data set and outlines the necessary steps for completion of the validation process.

The result of the validation process will be a metric based detection and track

prediction model, with supporting documentation, which can be confidently used as a

tool for prediction of infrared (IR) seeker/sensor system detection and track performance

for a variety of one-on-one engagement scenarios. This process should provide insight

into the validation process and trade-offs associated with model fidelity versus

complexity for the test scenarios under study.

3.6.1 MDTP Metric Tool

MDTP will utilize the collection of metrics identified in this report. It will use the

metric software tool developed under this effort to calculate the metric values on new

51

infrared sequences. The flexibility of this framework allows the ability to quickly add

new metrics if deemed necessary under the future effort. The neural network algorithms

and performance prediction algorithms will be coded and integrated into the current

framework. The tool will maintain the ability of running in the GUI or in a non-GUI

batch configuration. The GUI will have an experiment planner that allows the user to

select a large set of images for overnight or batch processing, and will continue to use

platform-independent libraries compatible with Windows, Linux, and SGI platforms.

3.6.2 MDTP Probability of Detection Prediction Methodology

Developing a detection prediction model requires output from a representative

algorithm, the metric calculations, and ground-truth information. For training purposes,

the desired output of the network is set according to algorithm performance. For each set

of metrics generated for an image, a performance value must be generated for driving the

desired output of the neural network. For example, the output of the network may consist

of nodes representing target detections, clutter decisions, and false alarm predictions.

Once the weights of the network are determined, the output values of each node are used

to predict how the detection algorithm will perform on a given image. Over an ensemble

of test images, the neural network outputs can be used to calculate probability of

detection and/or false alarm rates.

A subset of images from the data sources described in the next section will be

used to train the neural network. Once the network is trained for a desired sensor, metric

inputs to the network can be used to predict system performance.

3.6.3 MDTP Probability of Track Prediction Methodology

Tracker performance predictions will be carried out in a similar manner as for

detection. A generic tracker algorithm will be applied to various image sequences with

success and failure determined by the methodology described in the validation section.

Image metrics will be used as training inputs to a neural network while the success/failure

results will provide desired network outputs and feedback for determining synaptic

weights between each neuron. Once, training is complete, the network will generate

outputs based on metric input. The network output will project the success or failure of a

52

tracker for a particular sequence. Probability of Track can then be calculated by

observing results over an ensemble of metric inputs generated by a set of image

sequences.

3.6.3.1 Model Validation Methodology

Validation is defined in DoD Instruction 5000.61 as "The process of determining

the degree to which a model is an accurate representation of the real world from the

perspective of the intended uses of the model." The Recommended Practices Guide

(RPG) provided by the Defense Modeling and Simulation Office (DMSO) describes the

essential steps for validating models and simulations as shown in Figure 23.

Understanding the user's objective and characterizing the requirements are the foundation

of the validation process because they will determine the accuracy threshold for declaring

the results valid. This threshold will be determined in Phase I, and the validation process

will be executed in Phase II. The results of tactical tracking algorithms against imaging

data collected during captive flight and ground testing will serve as the available

referents. Simulation may be used to fill deficiencies in a set of validation data. Signature

metrics calculated from the same set of image data will be used to predict the

performance of the trackers. The accuracy of the predictions will be determined by

comparing the predicted and actual tracker performance. If the accuracy exhibits the

required creditability of the predictions, they will be deemed valid.

53

User
Objectives

Characterize
Requirements

Compare System
And Requirements

Validation
Results

Select
Referent

Compute
Accuracies

' ' t
Available
Referents

Characterize
System

System
Information

Figure 23. Essential Steps for Validation of Models and Simulations

MDTP will provide an approximation to the stochastic processes of target

detection and tracking. Therefore, validation of MDTP will require a comparison

between the deterministic results from the model and the discrete results from the test.

The results from a single test event will have litde use in the validation process; however,

a collection of test results can be used to calculate the probability that the target was

detected or tracked for the given test conditions (i.e., m detections out of n trials). This

calculated test probability will be compared to the predicted performance from MDTP for

the same test conditions. Ideally, a collection of test cases in which all conditions remain

constant would be used to calculate the performance probabilities; however, this is not

practical. Some variation in the test conditions of the test cases will have to be allowed.

Restrictions in the variability of the test conditions for a set of test results, the smaller the

test set will be. A trade-off between test condition variation and test set size (number of

test results) will be conducted using sensitivity analysis. The allowed variation within a

test set, the desired number of results within a test set, correlation within a test set and

other validation issues are addressed in this section.

54

This validation methodology is described in detail in the following subsections.

A validation notebook will be used to document the steps taken and used for the

validation final report. Figure 24 depicts the methodology used to validate MDTP.

IMPOF

NO

>

TEST DATA
PD jr Track Results

 ^►<' DISCREPANCIES

VALIDATION^V y^

TANT
VARIABLES 1

SENSITIVITY
ANALYSIS

TEST CONDITIONS

-►
GRAPHICAL
ANALYSIS -►

STATISTICAL
ANALYSIS

IMPORTANT
VARIABLES

1 ► MDTP

RESULTS \
YES

PD 3r Track Results

♦
ANALYZE

DISCREPANCIES

Figure 24. Validation Methodologj'

3.6.4 MDTP Model Validation

Utilizing a portion (approximately half) of the imagery from the database, a

distinct set of metrics will be identified that will provide a methodology to predict the

probability of detection and the probability of track for a given a scenario, sensor

characteristics, and environmental conditions. This first set of data will be used to

develop and confirm the approach for developing the MDTP model. The second portion

of the imagery database will be sequestered for use during the validation effort.

Modifications to MDTP may be made prior to validation, based on the results of the

metric analysis. Any modifications should be completed, and a baseline version of

MDTP should be finalized prior to beginning the validation process.

The validation effort will utilize the sequestered data, first to evaluate the

performance of generic and tactical track algorithms for comparison to the MDTP model.

55

This effort will require a scoring, or assessment for each tracker/image sequence

combination for the success or non-success of the event. A scoring methodology has been

previously developed for tracker assessment and approved by AM COM. This

methodology begins by attempting a track at the farthest range through endgame (approx.

250m). Each frame is scored "in Track" if an overlap condition exists between the

ground-truth box and the track gate box. If 90% of the frames within a sequence are

tracked then the track event can be declared successful, if the last frame of data is not

only in track, but the center of the track gate is located within the boundary of the

ground-truth box. If the tactical or multi-algorithm tracker fails then the slant range to

target is decremented by 250m and another trial is attempted using the same imagery

sequence. This methodology can have the affect of correlating failed cases, especially if

the cause is determined to be clutter near the endgame of the sequence. Therefore, for

single algorithm trackers or constant slant range imagery data (typically generic) an

attempt to de-correlate the trial data is accomplished by performing track attempts on 200

frame segments of the sequence, resulting in each trial being somewhat independent from

the result of the previous trial. After a specific tracker has been run on a section of the

data set, bounded by specified conditions under study, the overall tracker success is

determined. This success will then be compared to the performance of the MDTP model

prediction for the same data set to determine whether the model correlates well with the

test results.

The detection performance validation of autonomous detection algorithms, as

compared to MDTP, will be handled similarly as the track algorithms. Selected single

frame data sets will be used for both MDTP and ATR assessments and performance

predictions will be compared for validation.

Validation is a measure of comparison between the MDTP predicted performance

and the actual performance achieved during testing of various track and ATD algorithms

and perception based detection models for the imagery database. The basic validation

process consists of obtaining data from pertinent sources, reducing and categorizing it

where necessary, and compiling it in a table format for comparison purposes on a mission

set basis. These mission sets will contain enough data points to be statically significant,

56

therefore the number of data sets and track algorithms tested should be optimally

categorized to create this significance. The key comparisons to be made are Pd, and Pt for

a given set of measured metrics.

3.6.4.1 Sensitivity Analysis

A sensitivity analysis will be used to reduce the dimensionality of the validation

process. If each input into MDTP were treated as a variable, then the validation would be

based on many discrete points with Httle or no replication. Sensitivity analysis can be

used to reduce the number of input variables by making several of them constant

throughout the validation process. This creates the replication required to achieve

validation. As an example, it is anticipated that due to the short range for the IR sensor,

the atmospheric transmission will remain nearly constant over a given slant range.

It is desirable that the image sequence metrics be the only variations between

trials. These metrics are used to determine the Pd and Pt, which are primarily derived

from the intensity variations between target and clutter background; however, if a limited

number of significant variables are introduced, the validation still can be performed.

The sensitivity analysis will be conducted over the selected data set as part of the

validation process. Clearly, if MDTP is relatively insensitive to a particular parameter, it

is unnecessary to measure or segment that parameter to a high degree of precision.

Therefore, the sensitivity analysis can be used to refine accuracy requirements for the

processing of the imagery database.

To conduct the sensitivity analysis, a series of pre-designed MDTP cases will be

run. The selection of these cases will be based on orthogonal arrays to reduce the number

of runs required. Once the initial MDTP run set has been defined and the most

significant variables identified, a full factorial set of MDTP cases will be designed and

run to characterize sensitivity to the most significant variables.

57

3.6.4.2 CALCULATING PD FROM Test Data

The test data will be analyzed to determine the associated metrics, as well as the

test conditions. In the simplest cases, the Pd or Pt will be determined based on m

detections/successful tracks out of n trials:

p =P=m/
d ~ ' t n

It is also necessary to develop an MDTP Pd and Pt to validate against the imagery

data. The conditions and metric data will be fed into MDTP to develop these values. The

scoring for the test data will be on a per-look or per-track basis, since the process

assumes the target is completely within the field of view of the sensor for each image

analyzed.

3.6.5 Validation Criteria

3.6.5.1 Graphical Analysis

The track and ATD algorithms will be plotted alongside the MDTP results. This

will allow for direct comparison between the two data sets. This is a simplified Turing

test'*. In an actual Turing test, the two sets of data would be displayed with no distinctive

markings. If an expert cannot tell the difference between data from the actual algorithms

and from the simulation, then the simulation passes the vaUdation test. For this analysis,

plots as shown in Figure 25 will be examined to determine if MDTP is close enough to

actual test results. The crucial element in this comparison is that MDTP is not required to

explicitly reproduce real-world results. It is only necessary for MDTP to reproduce

results that are close enough that decisions made based on these results would be the

same as those made based on actual algorithm results.

58

Pd

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30
0.20

0.10

0.00

t^
1

V*
\ ^

^K
'^\ ,

■"■^-■^^

'■ - -f. = MDTP PREDICTION V
w HATA oniMT XA/ITM mMPlOPMCF IMTFRVAI ■

-4 A.- "-"^

Pl^ ̂ H pi^
* \

300 500 700 900 1100 1300 1500 1700
RANGE (m)

Figure 25. Graphical Comparison with Confidence Intervals

3.6.6 Statistical Analysis

There are several statistical techniques that could be used to validate MDTP. The

primary statistical technique is to develop a confidence interval (CI) around each

performance prediction. This technique is described in the following sections.

3.6.6.1 Comparison to MDTP Results

An initial approach to comparing test results to MDTP results would be to use

hypothesis testing. The hypothesis to be tested would be:

HO: Pd.xiisT = Pd MDTP

HI: PdiHST'^Pd MDTP

A level of significance would be chosen, and all of the tests would be run. An

equivalent approach is to use CIs. This is equivalent because at the same level of

significance, if a prediction falls outside of the CI, then it also fails the hypothesis test.

59

CIs have the advantage of allowing a more understandable form of presentation (as

depicted in Figure 25).

The CI represents the probability that the true performance prediction (Pd, Pt) is

within the confidence limits with a certain probability:

P{Lower Limit < Pd < Upper Limit) =l — a

where a denotes the level of significance.

The MDTP results will be compared to the calculated CIs, either graphically (as

in Figure 25J or in tabular form. The determination of model validity is based upon

whether the MDTP result falls within the CI. As an example, Figure 26 shows the

possible results and the determination of whether the MDTP result is valid for each case.

This figure also shows the possible sources of error. Note that it is impossible to know

whether any of these errors have occurred without knowing the true Pd. However, it is

possible to know the probability of committing each type of error. The method of

calculating these probabilities is given in the following sections.

3.6.6.2 Type I Error

In the equation above, the level of significance, a is the probability of making a

Type I error. A Type I error occurs when the hypothesis (HO) is true, but is rejected by

the sample. Therefore a Type I error occurs when the CI should include the true Pd, but

does not. For this validation, a Type 1 error is depicted in Figure 26.

It is expected that not all MDTP results will fall within the CIs. Even if there

were exact correspondence between MDTP and the test data, it would be expected that a

certain number would fall outside the CIs. This number is based on the probability of

making a Type I error. The probability of making an error given multiple, Ud, tests (CIs),

is given by:

P =l-fl-a)"" ^ error ^ V^ "•/

60

where the level of significance, a, is the same for each CI. Since the number of

errors is binomially distributed, the expected number of errors in na tests is anci.

Therefore, if 100 95% CIs are developed, (cx= 0.05), then with perfect correspondence

between MDTP and the real tests, 5 of the MDTP results would be expected to be outside

of the CIs.

CONFIDENCE INTERVAL DETERMINATION ERROR TYPE

TRUE
Pd MDTP

MDTP VALID NONE

1 V ^ 1 1 A ^ 1

TRUE
Pd MDTP

MDTP IINVAUD NONE

1 X

TRUE
Pd MDTP

IMDTP INVALID TYPEI
1 1 X # 1 1

MDTP
TRUE

Pd IMDTP VALID TYPE II
1 -¥- 1 X 1 ■TV- 1

Figure 26. Validation Results and Types of Errors

61

3.6.6.3 CI Development

This subsection describes how to develop the CIs required for vahdation. The use

of the standard CI for the mean is not accurate, since it is a probability (or proportion)

that must be analyzed. Therefore, the CI to be developed is a CI around a proportion.

For large sample sizes, this can be approximated using the normal approximation to the

binomial distribution^:

Irnf^ _m) Ini Z', m_

n /2| n n 72| n
where m is the number of detections in n trials, and ZaJi is the value of the

standard normal distribution that has a cumulative probability of aJi. A rule of thumb for

determining a sufficient sample size is given by Hicks as nPd > 4. For example, if the

Pd was determined to be 0.5, then the sample size, n, should be at least 8.

The exact CI for smaller n can be calculated using the binomial distribution.

From Beyer^, given that the lower limit of the CI is represented by 0^ and the upper limit

is represented by 0h, the lower limit is calculated such that:

^2=i0e:(i-ej"-
x=x'

where a is the level of significance, x is the number of detections, and n is the

sample size. A simplified form of the equation above is given by:

X -1

^2 = i-lUJe:(i-e,r
x=0

The upper limit of the CI, 6h, is calculated such that:

x=0

62

The ideal method of calculating the upper and lower limits, 6a and 9b, would be to

solve the above equations for these two variables. This, however, is not a straightforward

proposition. Fortunately, a simpler solution will produce the same results. This simpler

solution is to iteratively modify 6a and 6b until the resulting cumulative binomial

probabilities are equal to^^. Although there are tables that can provide these solutions\

with the advent of spreadsheets with powerful statistical analysis functions, more

precision is available through the use of an Excel spreadsheet. Using the BINOMDIST

function, which returns cumulative values of the binomial distribution, a spreadsheet has

been developed that implements Equations 7-10 and 7-11. Using the Solver, Excel will

iteratively modify values in cells (specifically 6a and 6b) until the target value for ^^ has

been reached. The precision can be set to almost any required level.

As an example of this methodology, consider 8 detections in 30 trials and an

alpha of 0.05. This yields a Pd of 0.266666667. This example is taken directly from

Beyer^. The CI given in Beyer (based on the tables) is:

/'(0.123</'J< 0.459) = 0.95

while the interval calculated using the binomial methodology and an Excel

spreadsheet results in:

P(0.12279481 < Pd < 0.45889365) = 0.95

and the CI calculated using the normal approximation results in:

P(0.108 <Pd< 0.158) = 0.95

The CI calculation clearly provides more precision than is possible by interpreting

the tables in Beyer and is much more accurate than the normal approximation. It is

relatively straightforward to implement; therefore, it will be used to calculate the CIs for

this validation.

63

Note that solving the binomial equations works only for m out of n successes

while m is in the range 1 to n-1. For the endpoints, 0 and n, a slightly different version

must be used. For 0 out of n, there is no probability associated with the lower limit;

therefore, only an upper limit can be calculated. This upper limit must be based on

cc instead of all to ensure a consistent CI. For n out of n, the lower limit must be

calculated similarly based on a

It is instructive to examine how the number of test results affects the vndth of the

CIs. Figure 27 depicts the CIs calculated using the binomial methodology for the

example above. The bar labeled "30" represents the CI for 8 detections out of 30 tests.

The "90" bar represents 24 detections out of 90 tests, and the "300" bar represents 80

detections out of 300 tests. In general, the more test cases used to develop the proportion

(Pd, Pt), the smaller the CI.

300

uj 90-•

u.
O
CC

tH 30+

13

E-

0.0 0.2 0.4 0.6 0.8 1.0

Pd

Figure 27. CI Width versus Number of Test

Another factor that affects the width of the CI is the resultant Pd for the test case.

As the proportion approaches 0.5, the CI becomes wider. The smallest CIs occur as the

proportion approaches low or high values (such as 0.1 or 0.9). This effect is illustrated in

Figure 27. This figure shows the width of the CI determined for test results from 1/30 to

29/30,1/90 to 89/90, and 1/300 to 299/300.

64

Both the number of tests, and the tested Pd have an effect on the CI width.

Another important effect is on the Type n error, as will be shown below.

3.6.6.4 Type II Errors

The CI is based on the Type I error. This is the probability of rejecting a true

hypothesis. A second source of errors that will be considered are Type n errors. The

probability of occurrence of a Type II error is represented by 6. 6 is the probability of

accepting a false hypothesis; therefore, it is the probability that the MDTP result is within

the CI, but should be outside the CI. Again, this error is depicted in Figure 26. The 6

error can be calculated based on how large a discrepancy is acceptable between MDTP

results and test results.

0.40 -

^-—^ '
__.._____^^^ 90 TESTS

0.35 — ^^ ^""■-^^^ 300 TESTS

0.30 - y^ ^\

I
1-
Q
5
o

0.25

0.20

0.15

0.10

0.05

V

/

-^ ^~> \

\

\
\

0.00
'

\

0.0 0.2 0.4 0.6 0.8 1.0

Figure 28. CI Width versus Pd

Given a true value for the Pd, it is possible to calculate the probability of

accepting a false hypothesis based on the CI calculated from the test results. Given a

lower and upper limit of 0^ and 9b, the probability of accepting a false hypothesis, 6, is

given by:

65

p = p[e,>Pd>d^

where Pd is the true probabiHty of detection. Calculation of B is then made by:

fi = p[pd<e,]-p[pd<e„]

Assuming a normal approximation to the binomial distribution, a Z value for each

of the above probabilities can be calculated by:

z- '-''
\pd(\-pd)

Using these Z values, the probabilities to use can be determined with a standard

normal distribution table; or with an Excel spreadsheet function. Thus, 6 can be

calculated.

For small sample sizes, determination of 6 must be based on the binomial

distribution. All of the equations above are vaUd. Determination of the probabilities in

The equation for |3 above (accepting a false hypothesis) is somewhat more difficult when

the binomial distribution must be used. This is primarily because the binomial

distribution is discrete, v/hereas the normal distribution is continuous. To determine 6,

Pd is used as the mean of the binomial distribution. The number of trials, n, is the same

as the number of tests used to develop the CI. The question becomes: what is the number

of successes in the cumulative binomial probability equation? The number of successes

is:

S3=int(e^n)^^^Sb-int(ebn)

66

The calculation of B then becomes:

This is a straightforward calculation in a spreadsheet using the previously

described functions. Plotting the 6 error for all possible values of pd results in a curve

known as the operating characteristic (OC) curve. Figure 29 shows the OC curve

calculated for the example problem previously described. This curve shows that as the

true Pd gets farther from the test Pd used to develop the CI, the probability of accepting

that the true Pd is within the CI decreases. This curve yields a way of bounding the

accuracy of the tested Pd.

As can be seen in Figure 29 as the number of tests increases, the range of Pd with

a high 6 error decreases. It is possible to say that the probability of accepting the

hypothesis that the true Pd is within the CI when it is not becomes high only as the true

Pd is very close to the tested Pd . From this figure, it can be seen that if it is desirable to

detect a shift of 0.1 in the Pd, then the probability of making a 6 error is very small,

-0.01.

For this validation, a minimum detectable difference between the MDTP Pd and

the test Pd will be selected. From this difference, the 6 error will be calculated and

identified in the table of results for each comparison.

67

 30 TESTS

 90 TESTS

 300 TESTS

0.4 0.6
TRUE Pd

0.8

Figure 29, Effect of Number of Tests on OC Curve

3.6.6.5 DISCREPANCY ANALYSIS

It is impossible to predict all sources of error that would cause validation

discrepancies. This subsection briefly introduces several potential sources of error as

given in reference 4:

1. Errors in mput data,

2. Errors in procedure or use of the model,

3. Errors in interpretation of results,

4. Errors in programming, and

5. Errors in design (algorithms).

The error analysis will examine, in the order listed above, the respective errors to

determine if they are systemic, random, or single point. It is important to note that usage

and programming errors will be examined prior to algorithm execution.

68

A source for error that falls under item 2 (above) is the fact that all of the

measurements are taken under test conditions, and that there are multiple looks over the

same vehicles and terrain. A modeling assumption is that each of the looks is

uncorrelated with prior looks. This assumption vidll be examined during data reduction to

test its validity.

As seen in Figure 24 there is a feedback loop in the validation process. This

represents examination of errors and their sources and modification of MDTP inputs or

algorithms to more closely represent the test results.

The support the tracker performance methodology and the validation plan, a

generic tracker must to identified and used as the actual tracker. Several portions of this

report allude to the use of a tracker, but are left ambiguous. The next section details the

actual tracker that vi'ill be used to support the Phase n effort.

4. Tracker Algorithm

A Modular Framework for Algorithm Development and Evaluation (MFADE)

and the Ground Attack Target Engagement (GATE) algorithm was recentiy developed

the Aviation and Missile Research, Development, and Engineering Center (AMRDEC),

IR Branch. This effort was performed by Dynetics and it integrated algorithms for

tracking ground targets. Initially, a Hot Spot, Bayesian, and Feature-Based Correlation

(FBC) algorithms were to be considered for inclusion in the GATE algorithm

MFADE can be run from its Graphic User Interface (GUI) or by using a

command line version. It has hooks for acquisition, small-target, mid-course, and

terminal algorithms and can support multi-channel algorithms to include hooks for data

fusion. MFADE is implemented in a modular fashion to accommodate growth and

expansion in the future. The modular design also can support insertion of real image data

as well as integration with simulations that include seekers and/or scene generators. The

GUI is focused on Microsoft OS, but all other code was developed to ANSI standards to

maximize the portability to other computer platforms. MFADE is vmtten in C-i~i- and

69

calls many subroutines that are in C. Lastly, there are hooks for interfacing with 6-DOF

models or external data sources (e.g. gimbal data, telemetry, range to go, etc.).

The primary algorithm within MFADE is the GATE algorithm which consists of a

combination of the Anti-Median Hot Spot (AMHS) track algorithm, the Anti-Median

Geometric Centroid (AMGC) track algorithm, a re-centering algorithm, and the Feature

Based Correlation (FBC) track algorithm. The primary mode for the algorithm is to start

in the AMHS tracker. The imagery is filtered using an Anti-Median (AM) filter of a sub-

image around the target area. The AM filter tends to enhance hot and cold spots on the

target while suppressing extended bodies such as roads, poles, trees, and so on. The

GATE algorithm continues in the AMHS mode, each time checking to see if there is a

predominate HS (in the AM filtered image) that is much higher than the surrounding

background. The HS inside of the track box must be 7 background sigmas above the

mean background level (measured in a background box surrounding the track box). If the

HS intensity ever falls below this level, the GATE will transition to a re-centering

algorithm then to a Sobel AMGC algorithm.

The re-centering algorithm is accomplished using a Sobel Geometric Centi-oid

(GC) routine. First, the image is filtered using a Sobel routine. The Sobel filter is a

gradient operator that enhances the rate of change in the original imagery, which

accentuates the edges or high frequency content of the image. The idea is to highlight the

target edges before performing a GC track on the image. This is repeated for 25

consecutive images in an attempt to walk the track gate onto the center of the target if it

had previously been offset because of AMHS tracking on a hot spot. On each frame, the

image is filtered with the Sobel filter, then the top 12% of the pixels within the track gate

are used to geometrically center the new track box. Note that this re-centering algorithm

is used again in the transition to FBC from either the AMHS or the AMGC.

The Sobel AMGC algorithm is a tracker that operates on an image that is first

Sobel filtered, then AM filtered, as its name implies. The Sobel AMGC algorithm has

demonstrated capability to track targets that do not have a prominent hot spot on them,

such as the cold side (right side) of a T-72.

70

The final track algorithm that is invoked is the FBC algorithm. A transition to a

re-centering algorithm is performed first followed by the FBC algorithm. The transition

occurs when the track box has more than 750 pixels on target. For the AMS seeker in

narrow field of view, this occurs at a slant range of approximately 1000 meters. The FBC

algorithm uses a reference template to correlate with each succeeding image to locate the

target and center the track box on the target. Additionally, the FBC uses a feature

extraction and a scoremap to allow processing and correlating on a smaller portion of the

image about the track box that incorporates only features that are persistent frame-to-

frame. This results in fewer calculations and completing the processing more quickly.

The FBC algorithm in GATE has been improved from its predecessor in ISAT for better

performance in endgame. The template is updated more often, and the template is

magnified, as needed, when the track box is growing at high rates, such as during

endgame.

The MFADE and GATE were developed as government owned and operated

source code and algorithm. All results can be openly published. And since it is a robust

tracker and should represent a typical tracker used for missile seeker terminal homing, it

will be used as the system tracker in the methodology implemented in the Pending Phase

n effort.

5. Conclusions

In conclusion, all requirements for the completion of the Phase I SBIR have been

met. A large set of infrared image sequences have been identified, ground-truthed, and

processed with the metrics. Several metrics have been identified and developed that will

support future analysis and the Phase IT effort. A modular software metric tool has been

developed that will read image sequences of any format, and process the sequences with

the user selected metrics. The metric tool is designed for ease of adding additional metric

algorithms as they become available. A comprehensive process for taking the metric

outputs and comparing them to actual tracker performance for the training of a neural

network process has been defined in some detail. And a comprehensive validation plan

to prove the viability of the performance model, and then ultimately the use of the tool by

71

the community has been identified. The actual tracker that will be used for the validation

has been identified and has been approved for use. And the proposed phase I option will

allow the addition of MWIR and LWIR image sequences and ground-truthing of these

sequences for use in the Phase H. All processes are defined and ready to take this effort

to the next level. Clearly the feasibility of a performance prediction capability for auto-

tracker and ATD systems has been demonstrated and justifies the continuation and award

of the Phase n effort.

4

5

6

REFERENCES

Gonzalez and Woods, Digital Image Processing, Prentice-Hall Inc., 2002.

Margaret A. Phillips and S. Richard F. Sims, "A Signal to Clutter Measure for ATR

Performance Comparison", U.S. Army Missile Command, Research Development

and Engineering Center, Redstone Arsenal, AL 35898

Kimbel, Carrie, Mark Chambliss, Jay Griffin, Jay Lightfoot. Daniel Konkle, Jeff

Todd, "Tracker Analysis and Groundtruth Tool Description," 2002 Ground Targets

Modeling and Validation Conference, August 2002.

Shannon. Robert E., Systems Simulation, the Art and Science. Prentice-Hall, 1975

(UNCLASSIFIED).

Beyer. William H., Ed.. CRC Standard Probability and Statistics. CRC Press, 1991

(UNCLASSIFIED).

Hicks. Charles R.. Fundamental Concepts in the Design of Experiments, Saunders

College Publishing. 1982 (UNCLASSIFIED)

72

Appendix A

Infrared Image Sequences

If

^•1

III
11 m E

it

lie

|sf

IP
^^e
^le

5

H

m

|s|

lls

^|£
^|e

I? 2 S

lie

§1-

M

If-
u u I
5 5l

I- li

IP
^|£
^|£

1^

1 -1 •
i2 iz i E ' E E ■

m

I? s s

as ^

|lg
.11 n S

rfi

lie
It,
€ 'E j?

|si

its

.\lg
^le

h

1 gg

Ill

lie
11^

M
111

i|g

^le

I? ft £

'a
a: ^
8.S

11

lie

a B
o o ^h

a a 3 a

a a

•■&■

5

a a

g g

|s|

Its

'I-

U* s
I-

ill

5 o
s

■<\<
is S
^^

s

<
I

&I

u

u
<N <N (N

*t ■|i u u t

lie

Isi

l|s

5|s

li ,1-

z

s s

3,

II
II

lie

S IS

Til

It
1^

I-

.51

:R:S:S iRSS

c g

|si
S.1

:!SR;S

.8w;
t;

-5 B S S

l|^

il^

^1^

> O O I

I O O I

> *5 S V > >0 VO ^
' ^ ^;

vo ho
ss ^ ^
ro O & so lO \o

> 0\ o o <
; o —"" -^ ' I M n r» (

» 00 r* \

■ o\ c

SP
IS'
i O
■z:

•l-i i'a ^■■a
"-1 M •

ii

IS!

i
i

li SSI Hi ^i?] S2S] SS

ffl
^ ^ ^

to w

1 00 kO I ■ -v ^ ■ ' g g g i
> vo >o vo >

I 3 f-^

i-i ■•a^

fS rSS I |S1

>5
9 B

lit
P

H

o o
o o

SIS :e;&i

II.

c- C^ C^

o o
o" o"

- c- c- e^ I

II.

o o
o o

S;P ;:?:

S < ■a .? <

S B

t

Ml
i|^

JS iS
«

00 t^ t
o o <

i y

— M

li
Bl,

Is

I 1.1 t 11 'a^ 1 ■I "■§1 1 i 11

S
=3

SS as
5 _
SI sssss .&.5.6id^.£

3

ssiJz
-=3

"IJ

if

1^ 0 B

K!K

II ill.

S5 V. ©

^1"
|::S:SE :S:S:1

III
II

> O O I
• o o < 1 m m (

CO H

^1
■s a

ay

il^ I C4 CJ I

?- 5% ?o so o o ill : ^ ^;

O 00 O <

. M O I
i 00 vp (

•lil

1 ^=a I'-a ^'•§ ^
m tn

II

3t I SS .S.&J SS
g _

s

1'
I n 0
I'a'i

SS: JSS

ill

y

tSSSi

III
> O O '
i O O <

11 n S

111

-5 B S B

n £ £.

iy

11^
I""
« g
a I IP

B s-

•■a'a

SSS

t «ri wi tn •

■II

51

; q o 1

tool

: o r. '

> M 2

) 09 a
: e t

■s:

iil

M M l' I =|--3
oil a

%%■■

s:
SI

ili =3
a

) M CO CA C
ss S: US sii ■ Is

. J=3

SI SI ss

E '
! §

i is

I?' a a.

li
IBB.

'A
ll 111

II

■a -S < III

> o o <
■ H K I
> o o < 1 o O O O C

By

11^

m

0! g

n
 c-

a b

> <0 CO (

.s.s
0 "oil 7

I o o <
I 00 DO C

> o o c

> o o
■ r-' (--■
i o o

o o <

S o (

• r- 00 c

QC oc

: E-

3-4 i at

p o

i

e 8 s a 2

■i S

m £

S E

o o

So

o o

o o

^ a

11^

:3|^

^6

.n

n

Appendix B

Invariant Corporation

ImgMetrics Analysis Tool

User's Manual

Table of Contents

1. Introduction ^

2. Installation ^

2.1 Prerequisites 4

2.2 Source and Configuration Files 4

2.3 GUI Version 6

2.4 Console Version ^

3. Configuration ^

4. Operation "

4.1 Console Application 7

4.2 GUI Application 7
4.2.1 Analysis File Creation/Editing 7
4.2.2 Executing the Analysis 11
4.2.3 Inspecting the Execution Results 12
4.2.4 Other Operations 13

5. New Metric Creation 13

5.1 MetricTemplate.pro 13

5.2 MetricTemplate.h 14

5.3 MetricTemplate.cpp 14

5.4 Finishing Up 14

6. Metric Template Source 15

6.1 MetricTemplate.h 15

6.2 MetricTemplate.cpp 16

6.3 Sample XML File 17

1. Introduction

The Invariant Corporation ImgMetrics program enables the user to perform
various metric calculations on an image sequence. The metrics are calculated on a "per
frame" basis, resulting in a set of metric values for each image contained in the given
sequence.

The tool is extendable by allowing for end user's to create their own metric
calculations. The tool is also versatile in that the set of metrics calculated for each
analysis can be easily changed between runs. The list of sequences on which to perform
these calculations may also be added to and deleted from easily.

The tool may be used to configure the analysis, run the configuration to calculate
the metrics, and finally, to inspect the results of these calculations. The tool provides
three views for the inspection of the analysis runs. These are a VCR type viewer for the
image sequence, a window showing the exact values calculated on a frame by frame
basis, and a graphical representation of the values calculated presented over the range of
the sequence. The graph allows for the selection of up to five different metrics to be
graphed. The graphs for each metric are distinguished by usmg different colors for the
plot lines.

There is also a version of the tool which provides only the ability to run the metric
calculations. This tool runs in a command Ime mode and produces a text output file.
This file is saved in CSV format and may be viewed using a text editor or spreadsheet
program, such as Excel. The command line version takes either all of the parameters
listed individually on the command line at program invocation, or alternatively, will read
these values from an XML file. This file can be generated by the GUI version of the tool,
or by hand using any text editor or and XML editor. The format of the XML file is
provided in the appendix.

2. Installation

A self extracting executable install file named ImgMetric_Setup.exe is provided
to install the ImgMetrics tool. This install file has been created using Inno Setup. For
more information on Inno Setup please see httD://www.irsoftware.org/isinfo.php.

The install file contains three install options. These options are "Source and
Configuration files", "GUI Version", and "Console Application".

2.1 Prerequisites

There are a few pre-requisites to the build process. One of these is the QT
development environment. QT is a multi platform graphical user interface programming
environment and was used to build the GUI version of the tool. QT is a product of
TroUtech Corporation and more information, as well as directions on obtaining QT can be
found by going to TroUtech's web site at http://www.trolltech.com.

The GUI version also uses the QWT library. The QWT library is used to
generate the graphical representation of the metric values. This API can be found by
going to this website, http::// http://Qwt.sourceforge.net/index.html. The website will
provide fiarther information on the use of the QWT library, and also instructions for
downloading and mstalling the QWT API.

The console and GUI version of the tool also use the Xerces XML API. More
information about Xerces and instructions on how to obtain the API can be found by
going to this website, http:// http://xml.apache.org/.

Each section contains a list of environment variables which must be added to the
target system and then to that system's path environment variable. There are exceptions
to these lists if the target system is already using Invariant's codec and ITools libraries.
If this is the case, these variables will already exist on the system and should also be in
the path. If it is known that this is the case ignore the directions for setting the codecs
and ITools environment variables.

Another thing to be careful of, if the libraries already exist on the target machine,
is version incompatibility. It may be necessary to update the existmg versions of the
libraries with the new ones from this installation. Simply copy the dlls from their
installed locations to the existing location on the target machine. This may cause
unexpected results in the previously existmg applications dependant upon these libraries.

2.2 Source and Configuration Files

This option mstalls all of the files necessary to build the tool on the target
machine.

The configuration files depend on the existence of several environment variables.
These variables are used by the configuration scripts to generate the makefile and also by
the software as it runs.

The environment variables that must be set are as follows:

Environment Variable Description

Metricsdir The location of the metric dlls.
Itools The location of the ITools header files.
Codecs The location of the codecs header files.
QTDIR The location of the QT and QWT libraries, as well as

the qmake utility.

ImgMetricsLibs The location of the AnalysisCodec and Metric Base
libraries.

QMAKESPEC List of possible values can be found by looking in the
QT/mkspecs directory. For example the value for
Microsoft Visual C-H-.Net would be win32-msvc.net

XERCES The location of the Xerces install.

These variables must also be added to the path environment variable.

When these pre-requisites have been met, the system specific makefiles can be
generated using the Trolltech utility qmake.

There are several items that must be buih before the main program, hngMetrics,
is buih. These are the Analysis Codec, the Metric Base object, and the individual
metrics.

To build the AnalysisCodec, open a command prompt and navigate to the
AnalysisCodec directory. In this directory type the command "qmake". This will
produce the system appropriate makefile for the Analysis Codec library. Once the
makefile has been generated build the library according to your compilers instructions.
For example, in Microsoft Visual C-H- .Net version 2002, you would now type "nmake".

To build the Metric Base object, navigate to tiie MetiicBase directory and perform
the steps listed above.

The same procedure should be repeated in the individual metric directories to
build these libraries. The metiics are located in subdirectories under the MetricSources
directory. It is not necessary to build all of tiie metiics. Only tiiose which you intend to
use need to be built.

The ImgMetiics tool can now be buih. Perform tiie steps listed above in the
ImgMetiics directory to build the hngMetiics tool. The resulting executable will be
called ImgMetiics.exe. To build the console version of the tool perform these steps in the
consoleApp directory. The steps preceding tiie makefile generation and compilation of
the main tool are the same for the GUI and console versions of the tool. Witii the one

exception being that the console application does not need either the QT or QWT
libraries.

2.3 GUI Version

This option will install a ready to run version of the GUI tool. The source files
will not be included, the one exception being the template outlining the creation of new
metrics. When the install is finished the following environment variables must be added
to the system and then added to the path environment variable. These variables are:

Metricsdir - The location of the metric dlls.
Itools - The location of the ITools header files.
Codecs - The location of the codecs header files.
QTDIR - The location of the QT and QWT libraries, as well as the qmake utility.
ImgMetricsLibs - The location of the AnalysisCodec and Metric Base libraries.

2.4 Console Version

This option will install the console version of the tool. The source files will not
be mcluded. The console version does not require the graphical support provided by the
QT and QWT libraries. Therefore the environment variables for these libraries need not
be set with this installation. The environment variables that must be set are listed below.

metricsdir - The location of the metric dlls.
itools - The location of the ITools header files.
codecs - The location of the codecs header files.
ImgMetricsLibs - The location of the AnalysisCodec and Metric Base libraries.

3. Configuration

The only configuration issues involved are the setting of the environment
variables listed in each of the installation sections above. The individual view windows
may be positioned as the user sees fit.

4. Operation

This section will provide detail and instructions as to the operation of the
ImgMetrics tool. There are two versions of the metric tool available, a GUI version and a
console application.

4.1 Console Application

The console application is run from the command line by typing the command
"consolelmgMetrics". The program expects operational parameters to be supplied on the
command line. There are two ways to accomplish this. The individual parameters can be
supplied, or the name of an XML configuration file can be supplied. The individual
parameters expected are listed below:

start - Frame to begin calculating.
numFrames - Number of frames over which to iterate.
vid - The name of the image sequence file.
vdec - The name of the video decoder to use for this image sequence.
gtr - The ground truth file name.
cal - The calibration file name.
output - The output file name.
metric - The name of a text file containing the metrics to be calculated, one per line.

4.2 GUI Application

There are three main tasks associated with the GUI version of the ImgMetrics
tool. These are analysis file creation and editing, executing the analysis, and inspecting
the execution results.

4.2.1 Analysis File Creation/Editing

There are two different types of items that can be added or deleted from an
analysis file. These are image sequences and metrics. These items appear in the
ImgMetrics GUI along the left hand side of the main window in an expandable list. The
image sequences appear under the main heading Analysis, while the individual metrics
are shown under the main heading Metrics. The window containing this Ust will be
referred to throughout the rest of this document as the Project View. There is another
window directly below the project view, this window is used to display the individual
sequence parameters and shall be referred to as the Property View.

To add image sequences to the analysis select the Add menu on the menu bar.
This is a drop down menu, when clicked three options will be presented. These are "Add
Sequence", "Add Sequences", and "Add Metric". We will discuss the "Add Mefric"
option a little later on.

If "Add Sequence" is selected a data entry form will be presented. The form can
be seen in figure 1 below.

Add Sequence

Sequence Filename

Calibration Filename

Calibration Format

Codec Name

Frame Count

Frame Start

Groundtruth Filename

Groundtruth Format

Output Filename

Output Format

aste't'

text

boeingcmskr

text

CSV

Add Cancel

Figure 1. ImgMetrics Add Sequence Form

n

This form will allow the entry of all of the information required to create a new
sequence on which to perform metric calculation. Where file names are required, the
data can either be typed in or the buttons to the right of the text entry fields will presented
a navigable file selection dialog. After all of the fields have been filled in the user selects
the add button. This will add the new sequence to the list of sequences. If cancel is
selected, the data entered is discarded and no changes are made to the file.

If "Add Sequences" is selected a navigable file window will be presented. An
example of this can be seen in figure 2 below.

imgmetrics »;i \>,

Look In: | ^ C:/SBIR_Data/AMS_aiGHT_10/

|^old_csv_files

ISJNightTestlOa.

IsJNightTestlOb,

|m| Mightiest 13e.am-;

Im|NightTe--tl7.arri5

|S]NightTestl2a,.:

|m| NightTestl2b,am5 Is] NightTestZOa,

|m| NightTestIZc.ams !m| NightTestZOb,

||m|['-JightTest27a_b,.

[m| NightTest27a_c,.:

[m]NightTe5t4a.arns

Isl NightTest4c,ams

:|m|NightTest5a,arns

]NightTest5b.ams

JNightTest6a.ams

^1 ^ S d^' |s:s: sii

!]NighbTest6b,ams

ijNightTestB.ams

l|NightTest9a.ams

ilNightTest9b.ams

File name: |ghtTest4a.ams" "NightTest4b.ams" "NightTest4c.ams" "NightTestSa.ams" I

File type: | AIVJCOM MWIR Seeker (*.ams; *.dat) jZJ

Open

Cancel

J.

Figure 2. Add Sequences File Dialog

The file dialog will allow the selection of multiple files. The tool will fill out the
rest of the data for the sequence based on the file type selected. If this method of addition
is used all of the required files must be located in the same directory as the image
sequences. Also, the calibration file must be named the same as the parent directory with
a ".cal" extension. This method also sets the Frame Start and Frame Count parameters to
0. The program will determine the size of the image sequence during the metric run and
perform the calculations over the entire sequence.

The sequence fields may be edited individually at any time. When an individual
sequence is selected fi-om the analysis list, the sequence parameter values are displayed in
the Property View Window. This can be seen in figure 3.

■'"iM[xI

B-MeHict

Project View

CdbabonFtoname D\\SBIR_DBta\\AMS_RJCWrjtl\NAMSJ1

C«ftiiabonFoimat toxl
CodecHamo vm
Fiam Court 153
Fiane Slot 1
Groi«*RAFfa«imBG\\SffiR_Oflto\\AMS_aiGHT_10\SNirf*T8

Gtoundbuth Fonral atncom
DUtpulDate 12<»2003
Oiiput Flenww Q^^utm^^iraInrt^^|voiedt^^m<Iict^^Ana^

Output Fofmat ctv

Property View

FraniB

©®®c»®«i

Figure 3. Project and Property Views

When the individual parameters are displayed in the Property View, they may be
double clicked. This will produce an edit dialog for the property clicked allowing its
value to be changed. The change can be accepted by clicking on the Accept button, or
the changes can be discarded using the cancel button. An example of the edit property
dialog is shown in figure 4.

!■ Groundtruth Filename IK/'' ilM

i

Cancel j ;: Accept 1

i

Figure 4. Property Edit Dialog

If "Add Metric" is selected the add metrics dialog will be presented as shown m
figures.

Available Libraries

Avdiable Metrics Load Selected > J

MetricBase
Scm
TrkCorrMetric
VarianceMetric

Load All»

< Unload Selected

« Unload All

JUMJIMIJI

Loaded Metrics

J

OK Cancel

Figure 5. Add Metric Dialog

This option will allow the addition of metrics to be calculated. The list of
available metric is populated by the metric dlls that are contained in the directory
indicated by the METRICSDIR environment variable. To select the metrics click on the
metric name sin the available list and hen click Load Selected. Load All will move all of
the metrics listed in the Available section to the loaded section. Clicking OK will add the
metric to the analysis. Cancel will discard the changes.

Deletion of either metric or sequences can be accomplished by right clicking on
an item in the Project View. This will present a pop up menu with the delete option.

4.2.2 Executing the Analysis

To execute the analysis, select the Run Analysis option on the File menu. This
option will calculate the metrics contained in the analysis for each frame of every
sequence in the analysis. The resuhs can be viewed at any time after the run is complete.

The tool will show a progress bar indicating the percentage complete for the
current sequence. If the run contains more than one sequence, a new bar is presented for
each sequence as it runs.

The main window remains active during the calculations. Sequences on which
the run has completed may be viewed and the metric results inspected. If the analysis
had been run previously, these resuhs will be overwritten by the new run, unless the
output file name is changed.

4.2.3 Inspecting the Execution Results

After an analysis run is complete, or having loaded a previously run file, the
results may be analyzed using the ImgMetrics tool. The tool provides three view of the
data resulting form a run. These views are presented in three separate windows. These
windows will be called the Metric Graph, the Metric Data, and the Sequence View.
Figure 6 shows the hngMetrics tool displaying these views.

Figure 6. ImgMetrics Tool Analysis Windows

To begin viewing the results of an analysis run, select the desired image sequence
from the list of sequences displayed in the Project View. When a sequence is selected,
the sequence parameters will be displayed in the Property View, as discussed above. If
the image sequence exists it will be displayed in the Sequence View window. If the
analysis has already been run, and the output file exists, this data will populate the Metric
Data window. The Graph View window will also present a list of metrics to be graphed.

The Metric Data view shows the specific values calculated for each metric in the
analysis. These values are the calculation results for the frame currently displayed in the
Sequence View window. Navigation through these values is accomplished using the
VCR type control buttons in the Sequence View window.

The Sequence View window begins display with the first frame of the image
sequence. From this pomt the sequence may be played, stopped, or stepped through in

forward or reverse. There is also a scroll bar to allow the sequence to be scrolled
through. As an image plays, the Metric Data window will refresh with the currently
displayed frame's mefric values. If the analysis has not been run, but the sequence exists,
it will be displayed. However no metric data will be displayed in the Metric Data
window and the Graph window will not have any items to select for graphing.

The Graph View window will display plots of the metric data shown over the
range of the image sequence. There is a pale yellow vertical bar displayed in the plot
area indicating the location of the unage frame currently displayed in the Sequence View
window. Up to five metrics may be concurrently displayed in the graph area. Each
metric will have a different colored line representing the values. There is a legend at the
bottom of the Graph View indicating the color associations.

4.2.4 Other Operations

The ImgMetrics tool menu bar also provides for other standard fiinctions
generally expected in applications today. The file menu provides Save, Save As, Exit,
New and Open operations. There is also a help menu which will display this document.

5. New Metric Creation

The ImgMetrics tool metric calculation capabilities are extendable through the
addition of user defined metric calculations. These new metric may be buih upon
currently existing metrics, or be completely original. This section will outline the process
for creating new metric libraries for use within the tool.

The different variations of the installation all provide a directory called
MetricTemplate. This will be a subdirectory of the Metric Sources directory. This
directory initially contains three files. These files are MetricTemplate.pro,
MetricTemplate.cpp, and MetricTemplate.h. These files contain the starting point for
creating your own metric library.

The first step in creating your own metric is to create a sub directory under the
MetricSources directory. Once this is done, copy the three files named above to this
directory. Detailed directions on the changes to be made to each of the three files follow.

5.1 MetricTemplatcpro

This file is to be used with the qmake utility. It contains all of the information
qmake needs to generate the appropriate makefile for the current operatmg system. To
configure this file for use with your metric it needs to be renamed. The new file name
should match the name of the directory just created in the step above with the .pro
extension. When this is done, edit the file and change all occurrences of
"MetricTemplate" to the name of your new metric. Typically this will match the name

given to the .pro file. For example, if the .pro file were named MyMetric.pro,
"MetricTemplate" would be changed to "MyMetric". Save and close this file.

5.2 MetricTemplatch

This file should also be renamed accordingly. Using the above example, it would
be renamed to MyMetric.h. Open this file and change all occurrences of MetricTemplate
to the name chosen for the new metric. Save and close this file.

5.3 MetricTemplatccpp

Following the pattern illustrated above, rename this file to match the header file.
Continuing to use the MyMetric example this file is renamed to MyMetric.cpp. The
occurrences of MetricTemplate in this file should be changed to match the name used in
the header file. When this is complete save and close this file. We are now ready to run
qmake to create the makefile for the new metric.

5.4 Finishing Up

Up until this point the directions have been applicable to all target platforms.
From this point forward the directions will be specific to a platform running Microsoft
Windows and the Microsoft Visual C-H- .Net version 2002 compiler.

To run qmake open a command window and navigate to the directory containing
the new metric files. In the new directory type the command qmake if you wish to build
the library from the command line. Alternatively the command may be entered as
follows, "qmake -t vcapp", this will create a project file with a 'Vcproj" extension for the
new metric. This file may be opened using the C++ IDE.

The fmal step in the process is to implement the printHeader and calculate
methods in the source files. The printHeader method should output a comma separated
list of the metric values you will be calculating. There should be no new line contained
in the list. The second method to be implemented is the calculate method. This is where
the actual calculation of the metric is to be performed. The last thing calculate should do
is output the result of the calculation, followed by a comma. Again, no new line should
be inserted.

When the changes have been completed build the library by running nmake from
the command line, or the library can be buih inside the IDE using the build command.
When the build command is finished the new library v^U be placed in the METRICDLLS
directory and is now available to the hngMetrics tool. The new library will appear in the
Available Libraries list displayed by clicking the Add Mefrcis menu item in the
ImgMetrics GUI. Good Luck and Have Fun!!

6. Metric Template Source

6.1 MetricTemplatch

// ~
//
// infrared Scene Metrics Program

// $workfi1e:: MetricTemplate.h
$
// $Revision:: 1 !
// $Date:: 11/12/03 10:46a *
// $Modtime:: 11/12/03 10:45a *
//
// ~

// MetricTemplate is the "recipe" for creating your own metrics to use
with the metric tool. , , ^ . , T j -^u
// All of the "MetricTemplate" keywords should be replaced with your
class name.

#include "MetricBase.h"
#include <iostream>

/**
* implementation of RectimgMetricBase for calculating the image
statistics.
* calculates the scm.
*
* 01.0
* ©scm.h
V
// DLL specifiers...
#ifdef STATSMETRIC_BUILDDLL

#define STATSMETRIC_DECLSPEC _declspecC dllexport)
#defi ne STATSMETRICL.EXPIMP

#elif defined STATSMETRIC_DLL , ^-,-,. ^ ^
#define STATSMETRIC_DECLSPEC _declspec(dllimport)
#define STATSMETRIC_EXPIMP extern

#else
#define STATSMETRIC_DECLSPEC
#define STATSMETRIC_EXPIMP

#endif

class MetricTemplate : public RectimgMetricBase

public: . . 1 ^
typedef TimgMetri cClass<RectlmgMetn cBase,Metn cTemplate>

MetaClass; . . ^ ,
static imgMetncMetaClass* Class;

Met ri CTempl ateO;
-Met ri CTemplate(){};

/**
* calculate the metric for the given frame using the GroundTruth
* provided. The result is written to the file.

* @param Tlrtiage The image
* (aparam RectangularGroundTruth The groundtruth
* @param OStream The output file stream
*/

void pHntHeaderCstd: :ostreaiTi&);

* calculate the metric for the given frame using the GroundTruth
* provided. The result is written to the file.
*
* @param Timage The Image
* gparam RectangularGroundTruth The groundtruth
* ©param OStream The output file stream

calculate(Timage<float>&,RectangularGroundTruth&,std::ostream&);

};//End MetricTemplate

//EOF

6.2 MetricTemplatccpp

//

// infrared Scene Metrics Program

// Sworkfile:: MetricTemplate.cpp $
// $Revision:: 1 J
// $Date:: 11/12/03 10:46a |
// $Modtime:: 11/12/03 10:45a *
// //

// This is the "recipe" for creating your own metrics to be used with

// the "MetricTemplate" keywords should be replaced with the name of
your class. The printheader ■ u j
// method gets called once at object creation to put the metric header
in the output file. The calculate . , .
// method gets called for each frame of data in the image sequence.
The metric calculation code goes here. , -, .
// private methods can also be added to provide modularity in metrics
requiring complex or detailed
// calculations.

#include "MetricTemplate.h"
#i nclude "video/VideoDecoder.h"
#include "cpputil/cstring.h"
#include "cpputil/TSubArray.h"
#i nclude "cpputi1/TScalarArray.h
#i nclude "numeri cs/StatsAlgo.h"
#i nclude "eo_i r/RectGroundTruth.h"
#1nclude "eo_i r/Cali bration.h"

#1 nclude <iostream>
#i nclude <cstdlib>
#i nclude <algorithm>

#inclucle <stack>

using namespace std;
using namespace util;

imgMetricMetaClass* MetricTempIate::Class =
MetricTemplate::MetaClass::instance();

Metri cTempIate::Metri cTempIate()
: RectimgMetricease ()

std::cout « "MetricTemplate construct" « std::endl;
}// end constructor

// Print the headers to the output file
void MetriCTempIate::printHeader(std::ostream& output)

// TODO: Put the print header code for the metric here.
output « "MetricTemplate header line goes here « std::endl;;

}//End of printHeader

// calcualte the metrics.
void MetricTemplate::calculate(Timage<float>& imageFrame,

RectangularGroundTruth& gt,
std::ostream& output)

// TODO: The metric calculation code goes here. _ -, ■, .
std::cout « "MetricTemplate example code, put metnc calculation

code here." « std::endl;

}//End calculate

//EOF

6.3 Sample XML File

<?xml version="1.0" encoding="UTF-8"?>
<analysis>

<sequences>
<sequence format="ams" start_frame="l" num_frames="159">

<path>C:\\SBIR_Data\\AMS_FLIGHT_10\\NightTest4a.ams</path>
<calibration format="text">

<path>C:\\SBIR_Data\\AMS_FLIGHT_10\\AMS_Flight_10.cal</path>

</calibration>
<ground-truth format="amcom">

<path>C:\\SBIR_Data\\AMS_FLIGHT_10\\NightTest4a.gtr</path>

</ground-truth>
<output format="csv" date="12-03-2003">

<path>C:\\users\\jninont\\projects\\metrics\\AnalysisCodecTst\\jnin

_Stats.csv</path>

</output>
</sequence>

</sequences>
<metrics>

<inetric>VarianceMetric</metric>

</metrics>
</analysis>

